The Behavioral and Neurobiological Response to Sound Stress in Salmon

Author:

Oppedal Frode,Barrett Luke T.,Fraser Thomas W.K.,Vågseth Tone,Zhang Guosong,Andersen Oliver G.,Jacson Lea,Dieng Marie-Aida,Vindas Marco A.

Abstract

<b><i>Introduction:</i></b> Noise associated with human activities in aquatic environments can affect the physiology and behavior of aquatic species which may have consequences at the population and ecosystem levels. Low-frequency sound is particularly stressful for fish since it is an important factor in predator-prey interactions. Even though behavioral and physiological studies have been conducted to assess the effects of sound on fish species, neurobiological studies are still lacking. <b><i>Methods:</i></b> In this study, we exposed farmed salmon to low-frequency sound for 5 min a day for 30 trials and conducted behavioral observations and tissue sampling before sound exposure (timepoint zero; T0) and after 1 (T1), 10 (T2), 20 (T3), and 30 (T4) exposures, to assess markers of stress. These included plasma cortisol, neuronal activity, monoaminergic signaling, and gene expression in 4 areas of the forebrain. <b><i>Results:</i></b> We found that sound exposure induced an activation of the stress response by eliciting an initial startle behavioral response, together with increased plasma cortisol levels and a decrease in neuronal activity in the hypothalamic tubercular nuclei (TN). At T3 and T4 salmon showed a degree of habituation in their behavioral and cortisol response. However, at T4, salmon showed signs of chronic stress with increased serotonergic activity levels in the dorsolateral and dorsomedial pallium, the preoptic area, and the TN, as well as an inhibition of growth and reproduction transcripts in the TN. <b><i>Conclusions:</i></b> Together, our results suggest that prolonged exposure to sound results in chronic stress that leads to neurological changes which suggest a reduction of life fitness traits.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3