Berberine Promotes the Proliferation and Osteogenic Differentiation of Alveolar Osteoblasts through Regulating the Expression of miR-214

Author:

Liu Min,Xu Zhengmao

Abstract

<b><i>Introduction and Objective:</i></b> Alveolar osteoblasts have critical functions during alveolar bone regeneration. Berberine (BBR) and microRNAs (miRNAs) are considered to play important roles in regulating osteoblast differentiation. The study aimed to investigate the role and mechanisms of BBR in osteogenic differentiation of human alveolar osteoblasts (HAOBs) and determine miR-214 expression in the process. <b><i>Methods:</i></b> Healthy human alveolar bones were cultured in vitro and prepared for morphological observation and alkaline phosphatase (ALP) staining. The third generation of HAOBs was used for cell transfection and treated by different concentrations of BBR. Cell Counting Kit-8 was used to detect the effect of BBR and increased miR-214 on the proliferation of HAOBs. qRT-PCR and Western blot were used to detect the expression of osteogenic differentiation-related genes and miR-214 level, respectively. <b><i>Results:</i></b> The ALP staining results were positive, indicating that cultured cells were HAOBs. Different concentrations of BBR significantly promoted the proliferation of HAOBs and increased the expression levels of ALP, osteocalcin (OCN), collagen type I alpha 1 (COL1A1), runt related transcription factor 2 (RUNX2), and osterix (OSX). Moreover, the expression of miR-214 was reduced as BBR concentrations increased, and the increase of miR-214 reversed the BBR-induced proliferation and osteogenic differentiation of HAOBs. <b><i>Conclusion:</i></b> BBR could promote the proliferation and osteogenic differentiation of HAOBs through downregulating the expression of miR-214.

Publisher

S. Karger AG

Subject

Pharmacology,General Medicine

Reference25 articles.

1. Sammartino G, Dohan Ehrenfest DM, Shibli JA, Galindo-Moreno P. Tissue engineering and dental implantology: biomaterials, new technologies, and stem cells. Biomed Res Int. 2016;2016:5713168.

2. Zhao K, Wang F, Huang W, Wang X, Wu Y. Comparison of dental implant performance following vertical alveolar bone augmentation with alveolar distraction osteogenesis or autogenous onlay bone grafts: a retrospective cohort study. J Oral Maxillofac Surg. 2017;75(10):2099–114.

3. Tsutsumi T, Kajiya H, Tsuzuki T, Goto KT, Okabe K, Takahashi Y. Micro-computed tomography for evaluating alveolar bone resorption induced by hyperocclusion. J Prosthodont Res. 2018;62(3):298–302.

4. Freires IA, Santaella GM, de Cássia Orlandi Sardi J, Rosalen PL. The alveolar bone protective effects of natural products: a systematic review. Arch Oral Biol. 2018;87:196–203.

5. Ji J, Sun W, Wang W, Munyombwe T, Yang XB. The effect of mechanical loading on osteogenesis of human dental pulp stromal cells in a novel in vitro model. Cell Tissue Res. 2014;358(1):123–33.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3