pH Response and Tooth Surface Solubility at the Tooth/Bacteria Interface

Author:

Mayanagi Gen,Igarashi Koei,Washio Jumpei,Takahashi Nobuhiro

Abstract

Evaluating the physiochemical processes at the tooth surface/bacteria interface is important for elucidating the etiology of dental caries. This study aimed to compare the mineral solubility and protein degradation of coronal enamel (CE) and root dentin (RD), and investigate the involvement of dissolved components in bacteria-induced pH changes using a model of tooth/bacteria interface. An experimental apparatus forming a well was made of polymethyl methacrylate, and a bovine tooth (CE or RD) specimen was fixed at the bottom of the well. A miniature pH electrode was placed on the tooth, and Streptococcus mutans NCTC 10449 cells, grown in 0.5% glucose-containing complex medium, were packed into the well. The pH at the tooth/S. mutans interface was monitored continuously for 120 min after the addition of 0.5% glucose at 37°C. S. mutans cells were recovered from the wells, and the amounts of lactate and calcium were measured using a portable lactate meter and a fluorescent dye, respectively. Proteolytic activity was also evaluated fluorometrically. The pH of the RD/S. mutans interface was significantly higher than that of the CE/S. mutans interface (30 min: 6.37 ± 0.12 vs. 6.18 ± 0.11, 60 min: 6.08 ± 0.14 vs. 5.66 ± 0.27, 90 min: 5.49 ± 0.24 vs. 5.14 ± 0.22, p < 0.05). Greater amounts of calcium were dissolved from RD (3.19 ± 0.74 µg/mL) than from CE (1.84 ± 0.68 µg/mL; p < 0.05), while similar amounts of lactate were produced. Proteolytic activity was not detected at any of the interfaces. These results indicate that RD is more soluble to bacteria-induced acidification than CE. This method can contribute to the evaluation and development of caries-preventive materials.

Publisher

S. Karger AG

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3