Improving Bone Regeneration Using Chordin siRNA Delivered by pH-Responsive and Non-Toxic Polyspermine Imidazole-4,5-Imine

Author:

Wang Chuandong,Xiao Fei,Gan Yaokai,Yuan Weien,Zhai Zhanjing,Jin Tuo,Chen Xiaodong,Zhang Xiaoling

Abstract

Background/Aims: Bone nonunion remains a challenge for orthopaedists. The technological advancements that have been made in precisely silencing target genes have provided promising methods to address this challenge. Methods: We detected the expression levels of the bone morphogenetic protein (BMP) inhibitors Chordin, Gremlin and Noggin using realtime PCR in bone mesenchymal stem cells (BMSCs) isolated from patients with normal fracture healing and those with bone nonunion. Moreover, we detected the expression of Chordin, Gremlin and Noggin during the osteogenic differentiation of human BMSCs (hBMSCs) using real-time PCR and Western blot. We delivered Chordin siRNA to hBMSCs using a previously reported cationic polymer, polyspermine imidazole-4,5-imine (PSI), as a pH-responsive and non-cytotoxic transfection agent. The apoptosis and cellular uptake efficiency were analysed by flow cytometry. Results: We identified Chordin as the most appropriate potential therapeutic target gene for enhancing the osteogenic differentiation of hBMSCs. Chordin knockdown rescued the osteogenic capacity of hBMSCs isolated from patients with bone nonunion. Highly efficient knockdown of Chordin was achieved in hBMSCs using PSI. Chordin knockdown promoted hBMSC osteogenesis and bone regeneration in vitro and in vivo. Conclusions: Our results suggest that Chordin is a potential target for improving osteogenesis and bone nonunion therapy and that responsive and non-toxic cationic polyimines such as PSI are therapeutically feasible carriers for the packaging and delivery of Chordin siRNA to hBMSCs.

Publisher

S. Karger AG

Subject

Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3