Elevated Apoptosis in the Liver of Dairy Cows with Ketosis

Author:

Du Xiliang,Chen Liang,Huang Dan,Peng Zhicheng,Zhao Chenxu,Zhang Yuming,Zhu Yiwei,Wang Zhe,Li Xinwei,Liu Guowen

Abstract

Background/Aims: Dairy cows with ketosis are characterized by oxidative stress and hepatic damage. The aim of this study was to investigate hepatic oxidative stress and the apoptotic status of ketotic cows, as well as the underlying apoptosis pathway. Methods: The blood aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamate dehydrogenase (GLDH) and gamma-glutamyl transferase (GGT) activities and the haptoglobin (HP), serum amyloid A (SAA) and serum apoptotic cytokeratin 18 neo-epitope M30 (CK18 M30) concentrations were determined by commercially available kits and ELISA kits, respectively. Liver histology, TUNEL and Oil red O staining were performed in liver tissue samples. TG contents were measured using an enzymatic kit; Caspase 3 assays were carried out using the Caspase 3 activity assay kit; oxidation and antioxidant markers were measured using biochemical kits; apoptosis pathway were determined by qRT-PCR and western blot. Results: Ketotic cows displayed hepatic fat accumulation. The hepatic malondialdehyde (MDA) content was significantly increased, but the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were markedly decreased in ketotic cows compared with control cows, indicating that ketotic cows displayed severe oxidative stress. Significantly higher serum levels of the hepatic damage markers AST, ALT, GGT and GLDH were observed in ketotic cows than in control cows. The blood concentration of the apoptotic marker CK18 M30 and the number of TUNEL-positive cells in the liver of ketotic cows were 1.19- and 2.61-fold, respectively, higher than the values observed in control cows. Besides, Caspase 3 activity was significantly increased in the liver of ketosis cows. Importantly, the levels of phosphorylated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK) were significantly increased but the level of phosphorylated extracellular signal-regulated kinase1/2 (ERK1/2) was markedly decreased, which further promoted tumor protein 53 (p53) expression and inhibited nuclear factor E2-related factor 2 (Nrf2) expression. The apoptosis-related molecules p21, MDM2, Caspase 3, Caspase 9 and Bax were expressed at significantly higher levels in ketotic cows than in healthy cows, whereas the anti-apoptosis molecule Bcl-2 was expressed at significantly lower levels. Conclusions: Based on these results, ketotic cows display severe hepatic oxidative stress. The hepatic MAPK-p53-Nrf2 apoptotic pathway is over induced and partially mediated apoptotic damage in the liver.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3