Pyr3 Induces Apoptosis and Inhibits Migration in Human Glioblastoma Cells

Author:

Chang Hsin-Han,Cheng Yu-Chen,Tsai Wen-Chiuan,Tsao Min-Jen,Chen Ying

Abstract

Background/Aims: Glioblastoma, also known as glioblastoma multiforme (GBM), is a fast-growing type of tumor that is the most aggressive brain malignancy in adults. According to GEO profile analysis, patients with high transient receptor potential canonical 3 (TRPC3) expression have poor survival rates. The aim of this study is to evaluate the effects of Ethyl-1-(4-(2,3,3-trichloroacrylamide)phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate (Pyr3), a selective TRPC3 channel blocker, on the proliferation and migration of human glioblastoma cells. Methods: We first analyzed the TRPC3 mRNA expression in Gene Expression Omnibus (GEO) database. Then, TRPC3 protein expression was analyzed by Western blotting in three human GBM cell lines. The survival rate was measured by sulforhodamine B. JC1 staining was used to analyze the mitochondria membrane potential by flow cytometric analysis. Besides, the migration and invasion were evaluated by wound healing and Transwell assays. Annexin V and 7-aminoactinomycin D staining was used to monitor the apoptosis by flow cytometric analysis. The expression of apoptotic-related and migration-related proteins after Pyr3 treatment was detected by Western blotting. In addition, an orthotropic xenograft mouse model was used to assay the effect of Pyr3 in the in vivo study. Results: Basis on the results of bioinformatics study, glioma patients with higher TRPC3 expression had a shorter survival time than those with lower TRPC3 expression. GBM cell proliferation was decreased by Pyr3 treatment. The migration and invasion abilities of glioma cells were also inhibited via focal adhesion kinase and myosin light chain dephosphorization after Pyr3 treatment. Moreover, Pyr3 induced caspase-dependent apoptosis and mitochondria membrane potential imbalance in the GBM cells. In a xenograft animal model, Pyr3 in combination with temozolomide (TMZ) inhibited GBM tumor growth. Conclusion: Pyr3 inhibited GBM tumor growth in vitro and in vivo. Pyr3-TMZ combination therapy could be used to treat glioblastoma in the future.

Publisher

S. Karger AG

Subject

Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3