Exploring the Potential of Apple SensorKit and Digital Phenotyping Data as New Digital Biomarkers for Mental Health Research

Author:

Langholm CarstenORCID,Kowatsch TobiasORCID,Bucci SandraORCID,Cipriani AndreaORCID,Torous JohnORCID

Abstract

The use of digital phenotyping continues to expand across all fields of health. By collecting quantitative data in real-time using devices such as smartphones or smartwatches, researchers and clinicians can develop a profile of a wide range of conditions. Smartphones contain sensors that collect data, such as GPS or accelerometer data, which can inform secondary metrics such as time spent at home, location entropy, or even sleep duration. These metrics, when used as digital biomarkers, are not only used to investigate the relationship between behavior and health symptoms but can also be used to support personalized and preventative care. Successful phenotyping requires consistent long-term collection of relevant and high-quality data. In this paper, we present the potential of newly available, for approved research, opt-in SensorKit sensors on iOS devices in improving the accuracy of digital phenotyping. We collected opt-in sensor data over 1 week from a single person with depression using the open-source mindLAMP app developed by the Division of Digital Psychiatry at Beth Israel Deaconess Medical Center. Five sensors from SensorKit were included. The names of the sensors, as listed in official documentation, include the following: phone usage, messages usage, visits, device usage, and ambient light. We compared data from these five new sensors from SensorKit to our current digital phenotyping data collection sensors to assess similarity and differences in both raw and processed data. We present sample data from all five of these new sensors. We also present sample data from current digital phenotyping sources and compare these data to SensorKit sensors when applicable. SensorKit offers great potential for health research. Many SensorKit sensors improve upon previously accessible features and produce data that appears clinically relevant. SensorKit sensors will likely play a substantial role in digital phenotyping. However, using these data requires advanced health app infrastructure and the ability to securely store high-frequency data.

Publisher

S. Karger AG

Subject

Health Informatics,Computer Science Applications,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3