Natural Vitamin E Supplementation during Pregnancy in Rats Increases RRR-α-Tocopherol Stereoisomer Proportion and Enhances Fetal Antioxidant Capacity, Compared to Synthetic Vitamin E Administration

Author:

Gázquez AntonioORCID,Sánchez-Campillo MaríaORCID,Arnao Marino B.ORCID,Barranco Alejandro,Rueda Ricardo,Jensen Søren KroghORCID,Chan Jia Pei,Kuchan Matthew J.,Larqué Elvira

Abstract

Introduction: Low dietary intake of vitamin E is a global public health issue. RRR-α-tocopherol (RRR-αT) is the only naturally occurring vitamin E stereoisomer, but the equimolecular mixture of all eight stereoisomers, synthetic vitamin E (S-αT), is commonly consumed. The objective of this study was to evaluate bioavailability and antioxidant activity of RRR-αT versus S-αT, in both mother and fetus, after maternal supplementation during pregnancy. Methods: Female rats (7 weeks of age) received a modified AIN-93G diet supplemented with 75 IU/kg of RRR-αT (NVE, n = 20) or S-αT (SVE, n = 17). At delivery, the levels of αT, stereoisomer distribution, and antioxidant capacity were analyzed in maternal and fetal plasma. Results: NVE administration significantly increased the proportion of RRR-αT stereoisomer in maternal and fetal plasma. The percentage of RRR-αT increased from 32.76% to 88.33% in maternal plasma, and 35.25% to 97.94% in fetal plasma, in the NVE group compared to SVE. Fetal plasma from the NVE group was found to have higher total antioxidant capacity compared to SVE. Lastly, fetal plasma RRR-αT stereoisomer percentage was positively associated with expression levels of scavenger receptor class B type 1 (SR-B1) in the placenta. Conclusions: Both natural and synthetic sources of vitamin E showed similar bioavailability. Still, NVE supplementation increased the proportion of RRR-αT and promoted higher antioxidant activity in fetal plasma at birth. Placental SR-B1 might be involved in the stereoselective transfer of RRR-αT stereoisomer across the placenta and may improve αT bioactivity in the fetus.

Publisher

S. Karger AG

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3