Retinal Neurovascular Structural Changes in Optical Coherence Tomography and the Relationship between These Changes and White Matter Hyperintensities in Patients with Migraine

Author:

Altunisik Erman,Oren Burak

Abstract

<b><i>Introduction:</i></b> This study aimed to reveal whether retinal nerve fiber layer (RNFL), ganglion cell layer (GCL) inner plexiform layer, and choroidal layer (CL) thicknesses differed in patients with migraine. Optical coherence tomography (OCT) was used to measure these neurovascular structural changes and determine the relationship between these structures and cranial white matter hyperintensities (WMHs). <b><i>Methods:</i></b> This retrospective comparative registry study included a total of 155 individuals aged 18–55 (mean, 33.50 ± 8.34), consisting of 110 migraine patients and 45 healthy controls. <b><i>Results:</i></b> RNFLs were thinner in the migraine group than the control group but not to a statistically significant degree. However, in both eyes, peripapillary RNLF thickness in some specific quadrants was found to be significantly thinner in the patient group than the control group. GCLs were significantly thinner in the migraine group than the control group. CLs were significantly thicker in the migraine group than in the control group. There was no significant difference between the OCT parameters of patients with and without WMH. An inverse correlation was found between disease duration and CL thickness. CLs were significantly thicker in patients in attack periods than those in attack-free periods. There was no significant difference between the OCT parameters of the migraine with aura and migraine without aura subgroups. <b><i>Discussion/Conclusions:</i></b> Retinal neural and vascular structures might be affected in migraine sufferers, including those in subgroups. Rebound vasodilation may cause alterations in CL thickness during a migraine attack. Factors other than hypoperfusion may contribute to the pathophysiology responsible for the formation of WMH.

Publisher

S. Karger AG

Subject

Neurology (clinical),Neurology

Reference25 articles.

1. Panconesi A, Bartolozzi ML, Guidi L. Migraine pain: reflections against vasodilatation. J Headache Pain. 2009;10:317–25.

2. Headache Classification Committee of the International Headache Society (IHS). The international classification of headache disorders, 3rd edition (beta version). Cephalalgia. 2013;33(9):629–808.

3. Karalezli A, Simsek C, Çelik G, Eroglu FC. Evaluation of choroidal thickness using spectral-domain optical coherence tomography in migraine patients during acute migraine attacks: a comparative study. Eye. 2014;28:1477–81.

4. Trauninger A, Leél-Ossy E, Kamson DO, Pótó L, Aradi M, Kövér F, et al. Risk factors of migraine-related brain white matter hyperintensities: an investigation of 186 patients. J Headache Pain. 2011;12(1):97–103.

5. Negm M, Housseini AM, Abdelfatah M, Asran A. Relation between migraine pattern and white matter hyperintensities in brain magnetic resonance imaging. Egypt J Neurol Psychiatr Neurosurg. 2018;54(1):24.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3