MiR-142-5p Suppresses Tumorigenesis by Targeting PIK3CA in Non-Small Cell Lung Cancer

Author:

Wang Zhao,Liu Zhimin,Fang Xiaojie,Yang Han

Abstract

Background/Aims: Numerous studies have demonstrated that aberrant microRNA (miRNA) expression is involved in human disease including cancer. To date, the potential miRNAs regulating lung cancer growth and progression are not fully identified yet. Methods: In this study, the expression of miR-142-5p was measured in non-small cell lung cancer tissue and cell lines by qRT-PCR. The functional assays including the cell viability, colony formation, cell migration and invasion were performed in miR-142-5p mimic or inhibitor transfected cell lines (in vitro) and the cell tumorigenesis in nude mice (in vivo). The fluorescence ratios of cell viability were recorded using a multi-plate reader (Synergy 2, BioTek, Winooski, VT, USA) and the colonies were counted using an ELIspot Bioreader 5000 (BIO-SYS, Karben, GE). Results: MiR-142-5p was significantly downregulated in non-small cell lung cancer tissue and cell lines compared to normal human lung tissues. Overexpression of miR-142-5p resulted in decreased expression of PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) at both mRNA and protein levels. We found that miR-142-5p overexpression markedly suppressed cell proliferation in vitro and in vivo. Conversely, inhibition of miR-142-5p promoted lung cancer growth. Mechanistic studies showed that PIK3CA was a potential target of miR-142-5p and it mediated reduction of PIK3CA resulting in suppression of PI3K/Akt pathway. Conclusions: Our results demonstrate that miR-142-5p functions as a growth suppressive miRNA and plays an important role in inhibiting the tumorigenesis through targeting PIK3CA in non-small cell lung cancer.

Publisher

S. Karger AG

Subject

Physiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3