Role of FGF-2 Transfected Bone Marrow Mesenchymal Stem Cells in Engineered Bone Tissue for Repair of Avascular Necrosis of Femoral Head in Rabbits

Author:

Zhang Fei,Peng Wu-xun ,Wang Lei,Zhang Jian,Dong Wen-tao,Wu Jian-hua,Zhang Huai,Wang Jian-bo,Zhao Yin

Abstract

Background/Aims: Avascular necrosis of the femoral head (ANFH) is the focus and difficulty of orthopedic diseases. Recently, tissue engineering bone for this disease has shown a good therapeutic effect. The aim of the present study was to investigate the therapeutic effect of basic fibroblast growth factor (FGF-2) as cytokines transfected bone marrow mesenchymal stem cells (BMSCs) in constructing tissue-engineered bone for avascular necrosis of the femoral head. Methods: The FGF-2 gene overexpressed lentivirus-transfected rBMSCs with xenogeneic antigen-extracted cancellous bone (XACB) to construct tissue engineered bone, and the model of early avascular necrosis of the femoral head was established by lipopolysaccharide (LPS) combined with hormone. The models were randomly divided into five groups: A (control), B (XACB), C (XACB+rBMSCs), D (XACB+rBMSCs+Lv-GFP), and E (XACB+rBMSCs+Lv-FGF-2/GFP) groups. The therapeutic effect of the tissue engineered bone for the avascular necrosis of the femoral head was evaluated by gross anatomy, X-ray examination, immunohistochemistry and H&E staining. Results: The FGF-2 gene was transfected into rBMSCs (Multiplicity of infection [MOI] = 100) by lentivirus, and its efficiency was above 95%. The rBMSCs were successfully transfected overexpressing FGF-2 by qPCR and western blot. After tissue engineering bone implantation, X-ray examination and gross specimen observation revealed that the repair area in the E group was > 80% at six weeks, the defect was completely repaired at 12 weeks, and osteogenesis was stronger, when compared with the other groups. For the X-ray score, vascular area density and new bone formation area were higher, when compared with the other groups, and the difference was statistically significant (P< 0.05). Conclusion: FGF-2 gene overexpression lentivirus transfection BMSCs combined with XACB to construct tissue engineered bone can effectively promote vascular regeneration, and improve the repair effect of avascular necrosis of the femoral head.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3