Prediction of the Risk of Alopecia Areata Progressing to Alopecia Totalis and Alopecia Universalis: Biomarker Development with Bioinformatics Analysis and Machine Learning

Author:

Zhang Tao,Nie Yingli

Abstract

<b><i>Background:</i></b> Alopecia areata (AA) is an autoimmune disease typified by nonscarring hair loss with a variable clinical course. Although there is an increased understanding of AA pathogenesis and progress in its treatments, the outcome of AA patients remains unfavorable, especially when they are progressing to the subtypes of alopecia totalis (AT) or alopecia universalis (AU). Thus, identifying biomarkers that reflect the risk of AA progressing to AT or AU could lead to better interventions for AA patients. <b><i>Methods:</i></b> In this study, we conducted bioinformatics analyses to select key genes that correlated to AU or AT based on the whole-genome gene expression of 122 human scalp skin biopsy specimens obtained from NCBI-GEO GSE68801. Then, we built a biomarker using 8 different machine learning (ML) algorithms based on the key genes selected by bioinformatics analyses. <b><i>Results:</i></b> We identified 4 key genes that significantly increased (CD28) or decreased (HOXC13, KRTAP1-3, and GPRC5D) in AA tissues, especially in the subtypes of AT and AU. Besides, the predictive accuracy (area under the curve [AUC] value) of the prediction models for forecasting AA patients progressing to AT/AU models reached 90.7% (87.9%) by logistic regression, 93.8% (79.9%) by classification trees, 100.0% (76.3%) by random forest, 96.9% (76.3%) by support vector machine, 83.5% (79.9%) by K-nearest neighbors, 97.1% (87.3%) by XGBoost, and 93.3% (80.6%) by neural network algorithms for the training (internal validation) cohort. Besides, 2 molecule drugs, azacitidine and anisomycin, were identified by Cmap database. They might have the potential therapeutic effects on AA patients with high risk of progressing to AT/AU. <b><i>Conclusions:</i></b> In the present study, we conducted high accuracy models for predicting the risk of AA patients progressing to AT or AU, which may be important in facilitating personalized therapeutic strategies and clinical management for different AA patients.

Publisher

S. Karger AG

Subject

Dermatology

Reference31 articles.

1. Gilhar A, Etzioni A, Paus R. Alopecia areata. N Engl J Med. 2012 Apr 19;366(16):1515–25.

2. Juárez-Rendón KJ, Rivera Sánchez G, Reyes-López M, García-Ortiz JE, Bocanegra-García V, Guardiola-Avila I, et al. Alopecia Areata. Current situation and perspectives. Arch Argent Pediatr. 2017 Dec 1;115(6):e404–e11.

3. Lee S, Lee WS. Management of alopecia areata: Updates and algorithmic approach. J Dermatol. 2017 Nov;44(11):1199–211.

4. Jabbari A, Cerise JE, Chen JC, Mackay-Wiggan J, Duvic M, Price V, et al. Molecular signatures define alopecia areata subtypes and transcriptional biomarkers. EBioMedicine. 2016 May;7:240–7.

5. Suárez-Fariñas M, Ungar B, Noda S, Shroff A, Mansouri Y, Fuentes-Duculan J, et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J Allergy Clin Immunol. 2015 Nov;136(5):1277–87.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3