Ultra-Performance Liquid Chromatography-Q-Exactive Orbitrap-Mass Spectrometry Analysis for Metabolic Communication between Heart and Kidney in Adriamycin-Induced Nephropathy Rats

Author:

Wang Chunliu,Liang Jiping,Yang WenwenORCID,Wang Shixiang,Yu Jie,Jia Pu,Du Yapeng,Wang Mei,Li Ye,Zheng Xiaohui

Abstract

<b><i>Background/Aims:</i></b> Although the adriamycin-induced nephropathy model is frequently employed in the study of nephrotic syndrome and focal segmental glomerulosclerosis, the accompanying myocardial damage has always been a cause for concern. Therefore, there is a great need to study cardiorenal communication in this model. <b><i>Methods:</i></b> An adriamycin-induced nephropathy model was established via tail vein injection. The levels of the biochemical indicators serum albumin, serum globulin, serum total protein, serum cholesterol, serum creatinine (SCr), urinary protein, and urinary creatinine (UCr) were measured, and histopathological changes in the heart and kidneys were assessed using hematoxylin-eosin staining. Metabolomic changes in the heart, blood, and kidneys were analyzed using the metabolomics method based on ultra-performance liquid chromatography Q-Exactive Orbitrap mass spectrometry. <b><i>Results:</i></b> Compared with the control group, the model group showed significant decreases in serum protein and total protein levels, albumin/globulin ratio, and creatinine clearance rate as well as significant increases in serum cholesterol, SCr, urinary protein, and UCr levels. Significant pathological changes were observed in the renal pathology sections in the model group, including diffusely merged glomerular epithelial cells, inflammatory infiltration, and vacuolated glomerular cells. Additionally, thickened myocardial fibers, swollen nuclei, inflammatory infiltration, and partial myocardial necrosis could be seen in the cardiac pathology sections in the model group. Based on multivariate statistical analysis, a total of 20 differential metabolites associated with 15 metabolic pathways were identified in the heart, 7 differential metabolites with 7 metabolic pathways were identified in the blood, and 16 differential metabolites with 21 metabolic pathways were identified in the kidney. Moreover, 6 common metabolic pathways shared by the heart and kidney were identified: arginine and proline metabolism; arginine biosynthesis; glutathione metabolism; alanine, aspartate, and glutamate metabolism; beta-alanine metabolism; and histidine metabolism. Among these metabolic pathways, alanine, aspartate, and glutamate metabolism was shared by the heart, blood, and kidney. Succinic acid was found to be the key regulatory metabolite in cardiorenal metabolic communication. <b><i>Conclusion:</i></b> Six metabolic pathways were found to be involved in cardiorenal metabolic communication in an adriamycin-induced nephropathy model, in which alanine, aspartate, and glutamate metabolism may be the metabolic link between the heart and kidney in the development and maintenance of oxidative stress and inflammation. Succinic acid may serve as a key regulatory metabolic switch or marker of cardiac and renal co-injury, as shown in an adriamycin-induced nephropathy model.

Publisher

S. Karger AG

Subject

Cardiology and Cardiovascular Medicine,Nephrology,Cardiology and Cardiovascular Medicine,Nephrology

Reference33 articles.

1. Pereira Wde F, Brito-Melo GE, de Almeida CA, Moreira LL, Cordeiro CW, Carvalho TG, et al. The experimental model of nephrotic syndrome induced by doxorubicin in rodents: an update. Inflamm Res. 2015 May 64;64(5):287–301.

2. Li AP, Yang L, Zhang LC, He SS, Jia JP, Qin XM. Evaluation of injury degree of adriamycin-induced nephropathy in rats based on serum metabolomics combined with proline marker. J Proteome Res. 2020 Jul 19;19(7):2575–84.

3. Tan J, Wang J, Geng L, Yue Y, Wu N, Zhang Q. Comparative Study of fucoidan from saccharina japonica and its depolymerized fragment on adriamycin-induced nephrotic syndrome in rats. Mar Drugs. 2020 Mar;18(3):137.

4. Li T, Singal PK. Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation. 2000 Oct 102;102(17):2105–10.

5. Tong J, Ganguly PK, Singal PK. Myocardial adrenergic changes at two stages of heart failure due to adriamycin treatment in rats. Am J Physiol. 1991 Mar 260;260(3 Pt 2):H909–16.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3