NeuroD Expression in Podocytes and Interrelationships with Nephrin at Both Nuclear and Cytoplasmic Sites

Author:

Armelloni Silvia,Ikehata Masami,Mattinzoli Deborah,Li Min,Alfieri Carlo Maria,Rastaldi Mariapia,Messa Piergiorgio

Abstract

Background/Aims The research of genes implicated in kidney glomerular function, eliciting cell fate program, is always at the forefront in nephrological studies. Several neurological molecules have been recently the object of study not only for their involvement in the central nervous system differentiation but also for their importance in the functionality of other organs and for mature phenotype, as in kidney. NeuroD, in CNS, is related to two functional roles, the early survival and the differentiation. The aim of our study was to ascertain the presence of NeuroD transcription factor in glomeruli and to understand which targets and mechanisms NeuroD controls. Methods: We used immunofluorescence (IF) studies on both human and mice renal tissues and on cultured podocytes to describe NeuroD distribution; then we investigated NeuroD binding to the nephrin promoter region in cultured podocytes by chromatin-immuno-precipitation (ChIP) assay. The overexpression of NeuroD in podocytes was used to establish first its role in nephrin synthesis, evaluated by real-time quantitative (RTq) PCR and western-blot (WB) and successively to determine the recovery of cell morphology after adriamycin injury, measuring foot processes length. Results: We identified NeuroD transcription factor in glomeruli, in the same cells positive for WT1 and synaptopodin, namely podocytes; subsequently we observed a differentiation dependent NeuroD distribution in cultured podocytes, and a consistent link of NeuroD with the Nephrin promoter leading to the regulation of Nephrin translation and transcription. Our data also describes NeuroD expression in cytoplasm as phosphoprotein linked to nephrin and actinin4. Preliminary experiments seem to indicate NeuroD involved in dynamics of cell shape regulation after adriamycin injury. Conclusion: we propose that NeuroD possess in podocytes a dual ability acting in the nucleus as a transcription factor and in cytoplasm stabilizing cell shape.

Publisher

S. Karger AG

Subject

Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3