Identifying Amygdala-Like Territories in Scyliorhinus canicula (Chondrichthyan): Evidence for a Pallial Amygdala

Author:

Rodríguez-Moldes Isabel,Quintana-Urzainqui Idoia,Santos-Durán Gabriel Nicolás,Ferreiro-Galve Susana,Pereira-Guldrís Santiago,Candás María,Mazan Sylvie,Candal Eva

Abstract

To identify the putative amygdalar complex in cartilaginous fishes, our first step was to obtain evidence that supports the existence of a pallial amygdala in the catshark <i>Scyliorhinus canicula</i>, at present the prevailing chondrichthyan model in comparative neurobiology and developmental biology. To this end, we analyzed the organization of the lateral walls of the telencephalic hemispheres of adults, juveniles, and early prehatching embryos by immunohistochemistry against tyrosine hydroxylase (TH), somatostatin (SOM), Pax6, serotonin (5HT), substance P (SP), and Met-enkephalin (MetEnk), calbindin-28k (CB), and calretinin (CR), and by in situ hybridization against regulatory genes such as <i>Tbr1</i>, <i>Lhx9</i>, <i>Emx1</i>, and <i>Dlx2</i>. Our data were integrated with those available from the literature related to the secondary olfactory projections in this shark species. We have characterized two possible amygdalar territories. One, which may represent a ventropallial component, was identified by its chemical signature (moderate density of Pax6-ir cells, scarce TH-ir and SOM-ir cells, and absence of CR-ir and CB-ir cells) and gene expressions (<i>Tbr1</i> and <i>Lhx9</i> expressions in an <i>Emx1</i> negative domain, as the ventral pallium of amniotes). It is perhaps comparable to the lateral amygdala of amphibians and the pallial amygdala of teleosts. The second was a territory related to the pallial-subpallial boundary with abundant Pax6-ir and CR-ir cells, and 5HT-ir, SP-ir, and MetEnk-ir fibers capping dorsally the area superficialis basalis. This olfactory-related region at the neighborhood of the pallial-subpallial boundary may represent a subpallial amygdala subdivision that possibly contains migrated cells of ventropallial origin.

Publisher

S. Karger AG

Subject

Behavioral Neuroscience,Developmental Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3