Melatonin Attenuates Cerebral Ischemia/Reperfusion Injury through Inducing Autophagy

Author:

Yilmaz Umit,Tanbek Kevser,Gul Semir,Gul Mehmet,Koc Ahmet,Sandal Suleyman

Abstract

Introduction: The aim of this study was to investigate how melatonin administration for 3 days or 7 days following cerebral ischemia (CI) injury would affect autophagy and, therefore, survival in neurons of the penumbra region. Moreover, it was also aimed at determining how this melatonin treatment would affect the neurological deficit score and rotarod and adhesive removal test durations. Methods: Focal CI (90 min) was achieved in a total of 105 rats utilizing a middle cerebral artery occlusion model. After the start of reperfusion, the groups were treated with melatonin (10 mg/kg/day) for 3 days or 7 days. In all groups, neurological deficit scoring, rotarod, and adhesive removal tests were executed during reperfusion. Infarct areas were determined by TTC (2,3,5-triphenyltetrazolium chloride) staining at the end of the 3rd and 7th days of reperfusion. Beclin-1, LC3, p62, and caspase-3 protein levels were assessed using Western blot and immunofluorescence methods in the brain tissues. Moreover, penumbra areas were evaluated by transmission electron microscopy (TEM). Results: Following CI, it was observed that melatonin treatment improved the rotarod and adhesive removal test durations from day 5 and reduced the infarct area after CI. It also induced autophagic proteins Beclin-1, LC3, and p62 and suppressed the apoptotic protein cleaved caspase-3. According to TEM findings, melatonin treatment partially reduced the damage in neurons after CI. Conclusion: Melatonin treatment following CI reduced the infarct area and induced the autophagic proteins Beclin-1, LC3, and p62 by inhibiting the apoptotic caspase-3 protein. The functional reflection of melatonin treatment on neurological test scores was became significant from the 5th day onward.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3