Deep Learning-Based Segmentation of Airway Morphology from Endobronchial Optical Coherence Tomography

Author:

Zhou Zi-QingORCID,Guo Zu-YuanORCID,Zhong Chang-Hao,Qiu Hui-Qi,Chen Yu,Rao Wan-Yuan,Chen Xiao-Bo,Wu Hong-KaiORCID,Tang Chun-Li,Su Zhu-Quan,Li Shi-Yue

Abstract

Background: Manual measurement of endobronchial optical coherence tomography (EB-OCT) images means a heavy workload in the clinical practice, which can also introduce bias if the subjective opinions of doctors are involved. Objective: We aim to develop a convolutional neural network (CNN)-based EB-OCT image analysis algorithm to automatically identify and measure EB-OCT parameters of airway morphology. Methods: The ResUNet, MultiResUNet, and Siamese network were used for analyzing airway inner area (Ai), airway wall area (Aw), airway wall area percentage (Aw%), and airway bifurcate segmentation obtained from EB-OCT imaging, respectively. The accuracy of the automatic segmentations was verified by comparing with manual measurements. Results: Thirty-three patients who were diagnosed with asthma (n = 13), chronic obstructive pulmonary disease (COPD, n = 13), and normal airway (n = 7) were enrolled. EB-OCT was performed in RB9 segment (lateral basal segment of the right lower lobe), and a total of 17,820 OCT images were collected for CNN training, validation, and testing. After training, the Ai, Aw, and airway bifurcate were readily identified in both normal airway and airways of asthma and COPD. The ResUNet and the MultiResUNet resulted in a mean dice similarity coefficient of 0.97 and 0.95 for Ai and Aw segmentation. The accuracy Siamese network in identifying airway bifurcate was 96.6%. Bland-Altman analysis indicated there was a negligible bias between manual and CNN measurements for Ai (bias = −0.02 to 0.01, 95% CI = −0.12 to 0.14) and Aw% (bias = −0.06 to 0.12, 95% CI = −1.98 to 2.14). Conclusion: EB-OCT imaging in conjunction with ResUNet, MultiResUNet, and Siamese network could automatically measure normal and diseased airway structure with an accurate performance.

Publisher

S. Karger AG

Subject

Pulmonary and Respiratory Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Translating endobronchial optical coherence tomography to clinical practice;American Journal of Physiology-Lung Cellular and Molecular Physiology;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3