Histopathology of the Human Inner Ear in the p.L114P COCH Mutation (DFNA9)

Author:

Burgess Barbara J.,O''Malley Jennifer T.,Kamakura Takefumi,Kristiansen Kris,Robertson Nahid G.,Morton Cynthia C.,Nadol Jr. Joseph B.

Abstract

The histopathology of the inner ear in a patient with hearing loss caused by the p.L114P COCH mutation and its correlation with the clinical phenotype are presented. To date, 23 COCH mutations causative of DFNA9 autosomal dominant sensorineural hearing loss and vestibular disorder have been reported, and the histopathology of the human inner ear has been described in 4 of these. The p.L114P COCH mutation was first described in a Korean family. We have identified the same mutation in a family of non-Asian ancestry in the USA, and the temporal bone histopathology and clinical findings are presented herein. The histopathology found in the inner ear was similar to that shown in the 4 other COCH mutations and included degeneration of the spiral ligament with deposition of an eosinophilic acellular material, which was also found in the distal osseous spiral lamina, at the base of the spiral limbus, and in mesenchymal tissue at the base of the vestibular neuroepithelium. This is the first description of human otopathology of the COCH p.L114P mutation. In addition, it is the only case with otopathology characterization in an individual with any COCH mutation and residual hearing, thus allowing assessment of primary histopathological events in DFNA9, before progression to more profound hearing loss. A quantitative cytologic analysis of atrophy in this specimen and immunostaining using anti-neurofilament and anti-myelin protein zero antibodies confirmed that the principal histopathologic correlate of hearing loss was degeneration of the dendritic fibers of spiral ganglion cells in the osseous spiral lamina. The implications for cochlear implantation in this disorder are discussed.

Publisher

S. Karger AG

Subject

Speech and Hearing,Sensory Systems,Otorhinolaryngology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3