Author:
Wu Jie-Zhou,Liu Peng-Cheng,Liu Run,Cai Ming
Abstract
Background/Aims: Chronic alcohol abuse is an important risk factor for osteopenia. However, few studies have focused on the efficacy and mechanism of action of icariin on alcohol-induced osteopenia. The aim of this study was to investigate the efficacy and underlying mechanism of action of icariin in the treatment of chronic high-dose alcohol-induced osteopenia in a rat model. Methods: Thirty-six adult male Sprague-Dawley rats were randomly divided into four groups: sham, alcohol, and low-dose and high-dose icariin groups. Bone volume fraction (BV/TV), bone mineral density (BMD), bone biomechanical properties, and bone morphology were assessed after 16 weeks. Reverse-transcription PCR was used to detect mRNA expression levels of alkaline phosphatase (ALP), collagen type I (Col I), osteocalcin (OC), runt-related transcription factor 2 (Runx2), bone morphogenetic protein-2 (BMP-2), and osteoprotegerin (OPG). Results: Bone metabolic markers and biomechanical properties in the alcohol group were decreased significantly compared with the sham group. BV/TV, BMD, mineral apposition rate (MAR), percent trabecular area (%Tb.Ar), and bone biomechanical properties were elevated in the low-dose and high-dose icariin groups relative to the alcohol group. ALP, Col I, OC, Runx2, BMP-2, and OPG mRNA levels in the icariin group were significantly elevated in comparison with the alcohol group. Conclusion: Icariin can prevent overall progression of chronic high-dose alcohol-induced osteopenia in a rat model, in a dose-dependent manner. Icariin promotes bone formation and inhibits bone loss, and effectively restores bone structure and strength in chronic high-dose alcohol-induced osteopenic rats. Bone metabolism reversal is evidenced by increased BV/TV, BMD, MAR, %Tb.Ar, and biomechanical properties and elevated ALP, Col I, OC, Runx2, BMP-2, and OPG mRNA levels.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献