An Engineered DC-Targeting Lentivector Induces Robust T Cell Responses and Inhibits HBV Replication in HBV Transgenic Mice via Upregulating T Cell Autophagy

Author:

Ma Siyuan,Chen Xiaohua,Tan Quanhui,Dai Shenglan,Li Dan,Wu Shanshan,Yu Yongsheng,Zang Guoqing,Tang Zhenghao

Abstract

Background/Aims: Developing engineered dendritic cell (DC)-targeting lentivectors (LVs) have been the target of intense research for their potential to create antigen-directed immunotherapeutics which can be safely administered to patients. In this study, we constructed a DC-directed LV (LVDC-UbHBcAg-LIGHT) as a potential vaccine to induce anti-HBV immune responses. Methods: Specificity of LVDC-UbHBcAg-LIGHT for DCs in vivo was confirmed through live animal imaging studies. The levels of cytokine production in T cells were assessed by flow cytometry. The HBcAg-specific cytotoxic T lymphocyte (CTL) responses and antibody responses induced by direct administration of the LVs were detected by LDH release assay and ELISA respectively. The levels of serum HBsAg and HBV DNA were evaluated by Abbott kits and quantitative PCR respectively. The expression levels of HBsAg and HBcAg in liver tissues of HBV transgenic mice were examined by immunohistochemistry. In addition, molecular mechanism underlying the activation of CD8+ T cells was explored. Results: Live animal imaging studies showed that following subcutaneous administration of LVDC-UbHBcAg-LIGHT, no obvious luminescence signal was detected at the injection site. Immunization with LVDC-UbHBcAg-LIGHT elicited potent T cell responses in HBV transgenic mice evidenced by increased percentages of IFN-γ, TNF-α and GzmB producing CD8+ T cells as well as IFN-γ producing CD4+ T cells, improved HBcAg-specific CTL activities and antibody responses. Additionally, vaccination with LVDC-UbHBcAg-LIGHT efficiently reduced serum HBsAg, HBV DNA levels and the expression of HBsAg and HBcAg in liver tissues of HBV transgenic mice. More importantly, autophagy was induced in the activated CD8+ T cells, and the induced autophagy noticeably promoted the proliferation of T cells and decreased the frequencies of apoptotic CD8+ T cells by selectively degrading ubiquitinated apoptosis and cell cycle-associated protein aggregates. Futhermore, we confirmed the interaction between autophagosomes and ubiquitinated aggregates by confocal microscopy and immunoprecipitation analysis. Conclusions: These results demonstrated that LVDC-UbHBcAg-LIGHT provided a simple method of eliciting effective antiviral immune responses in HBV transgenic mice and might potentially be used as a therapeutic strategy to eradicate HBV with more safety and efficiency. Moreover, our results revealed a direct role of autophagy in promoting the survival and proliferation of activated CD8+ T cells.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3