The Combination of SHOX2 and RASSF1A DNA Methylation Had a Diagnostic Value in Pulmonary Nodules and Early Lung Cancer

Author:

Xie Bin,Dong Wenyan,He Fengping,Peng Feng,Zhang Honghua,Wang Wei

Abstract

<b><i>Introduction:</i></b> The study explored the effects of SHOX2 and RASSF1A DNA methylation in lung cancer (LC). <b><i>Method:</i></b> Bronchoalveolar lavage fluid (BALF) samples as well as LC and normal adjacent tissues were collected from 72 LC patients and 35 patients with benign pulmonary nodules. Quantitative analysis of SHOX2 and RASSF1A DNA methylation was performed in benign pulmonary nodules and different stages of LC. The diagnostic value of SHOX2 and RASSF1A DNA methylation in LC and benign pulmonary nodules was determined by receiver operating characteristics analysis. Gain/loss-of-function experiments were constructed in LC cells and mouse models of xenograft and pulmonary nodule metastasis. The levels of SHOX2 and transfer-associated genes were tested through quantitative reverse transcription polymerase chain reaction and Western blot. Malignant phenotype of LC cells was assessed by functional experiment. The tumor volume and weight of mice in xenograft models were measured. Pulmonary nodule metastasis was determined through HE staining assay. 5-azacytidine appeared as a positive control drug. <b><i>Result:</i></b> SHOX2 DNA methylation or RASSF1A DNA methylation had diagnostic efficiency in pulmonary nodules and early LC, with the two combined having better diagnostic value. SHOX2 expression was upregulated in LC. Similar to 5-azacytidine, SHOX2 knockdown inhibited LC cell viability, migration, and invasion in vitro as well as restrained LC tumorigenesis and pulmonary nodule metastasis in vivo, whereas overexpressed SHOX2 had the opposite effects. <b><i>Conclusion:</i></b> The combination of SHOX2 and RASSF1A DNA methylation had a diagnostic value in pulmonary nodules and early LC. SHOX2 positively modulated the tumorigenesis and metastasis of LC by regulating DNA methylation processes.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3