Monozygotic Twins Discordant for Immunoglobulin A Nephropathy Display Differences in DNA Methylation and Gene Expression

Author:

Wei Min,Meng Sijun,Shi Sufang,Liu Lijun,Zhou Xujie,Lv Jicheng,Zhu Li,Zhang Hong

Abstract

<b><i>Introduction:</i></b> Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis. It involves both genetic and environmental factors, among which DNA methylation, the most studied epigenetic modification, was shown to play a role. Here, we assessed genome-wide DNA methylation and gene expression profiles in 2 pairs of IgAN-discordant monozygotic (MZ) twins, in order to characterize methylation changes and their potential influences on gene expression in IgAN. <b><i>Methods:</i></b> Genome-wide DNA methylation and gene expression profiles were evaluated in peripheral blood mononuclear cells obtained from 2 IgAN-discordant MZ twins. Differentially methylated regions (DMRs) and differentially expressed genes (DEGs) were detected, and an integrated analysis was performed. Finally, functional enrichment analysis was done for DMR-associated genes and DEGs. <b><i>Results:</i></b> Totally 521 DMRs were detected for 2 IgAN-discordant MZ twins. Among them, 9 DMRs were found to be mapped to genes that differentially expressed in 2 MZ twins, indicating the potential regulatory mechanisms of expression for these 9 genes (<i>MNDA</i>, <i>DYSF</i>, <i>IL1R2</i>, <i>TLR6</i>, <i>TREML2</i>, <i>TREM1</i>, <i>IL32</i>, <i>S1PR5</i>, and <i>ADGRE3</i>) in IgAN. Biological process analysis of them showed that they were mostly involved in the immune system process. Functional enrichment analysis of DEGs and DMR-associated genes both identified multiple pathways relevant to inflammatory and immune responses. And DMR-associated genes were significantly enriched in terms related to T-cell function. <b><i>Conclusions:</i></b> Our findings indicate that changes in DNA methylation patterns were involved in the pathogenesis of IgAN. Nine target genes detected in our study may provide new ideas for the exploration of molecular mechanisms of IgAN.

Publisher

S. Karger AG

Subject

Materials Chemistry

Reference36 articles.

1. Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, Fogo AB, et al. IgA nephropathy. Nat Rev Dis Primers. 2016 Feb 11;2:16001.

2. Maiguma M, Suzuki Y, Suzuki H, Okazaki K, Aizawa M, Muto M, et al. Dietary zinc is a key environmental modifier in the progression of IgA nephropathy. PLoS One. 2014;9(2):e90558.

3. Fan P, Song J, Chen Q, Cheng X, Liu X, Zou C, et al. The influence of environmental factors on clinical pathological changes of patients with immunoglobulin A nephropathy from different areas of China. Ren Fail. 2018 Nov;40(1):597–602.

4. Elboudwarej E, Cole M, Briggs FB, Fouts A, Fain PR, Quach H, et al. Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. J Autoimmun. 2016 Apr;68:23–9.

5. Nakano K, Whitaker JW, Boyle DL, Wang W, Firestein GS. DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis. 2013 Jan;72(1):110–7.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Interleukin 1 Receptor 2 in Kidney Disease;Journal of Interferon & Cytokine Research;2024-04-01

2. Autoimmune diseases of the kidney;The Rose and Mackay Textbook of Autoimmune Diseases;2024

3. The Utility of Twins for Epigenetic Analysis;Epigenetic Epidemiology;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3