Acute Response of Engineered Cardiac Tissue to Pressure and Stretch

Author:

Donoghue Leslie,Graham Caleb,Sethu PalaniappanORCID

Abstract

The heart is a dynamic organ, and the cardiac tissue experiences changes in pressure and stretch during the cardiac cycle. Existing cell culture and animal models are limited in their capacity to decouple and tune specific hemodynamic stresses implicated in the development of physiological and pathophysiological cardiac tissue remodeling. This study focused on creating a system to subject engineered cardiac tissue to either pressure or stretch stimuli in isolation and the subsequent evaluation of acute tissue remodeling. We developed a cardiac tissue chip containing three-dimensional (3-D) cell-laden hydrogel constructs and cultured them within systems where we could expose them to either pressure changes or volume changes as seen in the left ventricle. Acute cellular remodeling with each condition was qualitatively and quantitatively assessed using histology, immunohistochemistry, gene expression studies, and soluble factor analysis. Using our unique model systems, we isolated the effects of pressure and stretch on engineered cardiac tissue. Our results confirm that both pressure and stretch mediate acute stress responses in the engineered cardiac tissue. However, both experimental conditions elicited a similar acute phase injury response within this timeframe. This study demonstrates our ability to subject engineered cardiac tissue to either pressure or stretch stimuli in isolation, both of which elicited acute tissue remodeling responses.

Publisher

S. Karger AG

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3