Brain Diffusion Imaging and Tractography to Distinguish Clinical Severity of Human PLP1-Related Disorders

Author:

Sarret Catherine,Lemaire Jean-Jacques,Sontheimer Anna,Coste Jérôme,Savy Nadia,Pereira Bruno,Roche Bastien,Boespflug-Tanguy Odile

Abstract

Aims: We performed quantitative diffusion tensor imaging and brain tractography to distinguish clinical severity in a series of 35 patients with hypomyelinating PLP1-related disorders classified using the Motor Developmental Score according to the best motor function acquired before the age of 5 years and the gross motor function measure (GMFM) at the time of magnetic resonance imaging acquisition. Methods: We calculated fractional anisotropy and diffusivity values in 26 regions of interest and the numbers of fibers and volumes of hemisphere tractograms. Fiber bundles on tractograms were characterized according to 3 criteria: size, direction of main-stream fibers, and connectivity of bundles (extratelencephalic projections, commissural fibers, and intrahemispheric connections). Results: Age-adjusted multivariate analysis in 3 severity groups revealed increased isotropic diffusion in the superior cerebellar peduncle and grey matter in the most severe group, and larger tractogram volumes and increased numbers of fibers in the least severely affected group. Tractogram patterns showed preserved extratelencephalic projections and a main anterior-posterior aspect of intrahemispheric fibers in most patients, whereas interhemispheric connectivity was variable. The most severely affected and intermediate patients had less intrahemispheric connectivity, with a frequent predominant anterior-posterior direction of main-stream fibers. Interpretation: Diffusion tensor imaging and tractographic parameters can operate as biomarkers to distinguish clinical severity in PLP1-related disorders and could improve our understanding of hypomyelinating leukodystrophies.

Publisher

S. Karger AG

Subject

Developmental Neuroscience,Neurology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3