Escin Increases the Survival Rate of LPS-Induced Septic Mice Through Inhibition of HMGB1 Release from Macrophages

Author:

Cheng Yajun,Wang Hongrui,Mao Min,Liang Chao,Zhang Yu,Yang Deijun,Wei Ziran,Gao Shunxiang,Hu Bo,Wang Lianghua,Cai Qingping

Abstract

Background: Previous studies have described the effects of Escin on improving the survival rate of endotoxemic animals. The purpose of this study was to explore the molecular mechanisms of this potentially beneficial treatment. Methods: First, the survival rate of endotoxemic mice was monitored for up to 2 weeks after Escin pretreatment, Escin post-treatment, or Escin post-treatment + rHMGB1. The effects of Escin on the release of pro-inflammatory cytokines such as TNF-a, IL-1ß, IL-6 and HMGB1 in the serum of endotoxemic mice and LPS-induced macrophages were evaluated by ELISA. Furthermore, the mRNA and protein levels of HMGB1 in LPS-induced macrophages were measured by qRT-PCR and Western blot, respectively. Additionally, the release of pro-inflammatory cytokines such as TNF-a, IL-1ß, IL-6 was evaluated by ELISA in rHMGB1-induced macrophages. Finally, the protein levels and the activity of NF-κB in macrophages were checked by Western blot and ELISA, respectively. Results: Both pretreatment and post-treatment with Escin could improve the survival rate of endotoxemic mice, while exogenous rHMGB1 reversed this effect. In addition, Escin decreased the level of the pro-inflammatory cytokines TNF-a, IL-1ß, IL-6 and HMGB1 in endotoxemic mice and in LPS-induced macrophages. Escin could also inhibit the mRNA levels and activity of HMGB1. The release of the pro-inflammatory cytokines TNF-a, IL-1ß, IL-6 could be suppressed in rHMGB1-induced macrophages by Escin. Finally, Escin could suppress the activation of NF-κB in LPS-induced macrophages. Conclusion: Escin could improve the survival of mice with LPS-induced endotoxemia. This effect maybe meditated by reducing the release of HMGB1, resulting in the suppression of the release of pro-inflammatory cytokines.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3