Author:
Coconi Linares Nancy,Fernández Francisco,Loske Achim M.,Gómez-Lim Miguel A.
Abstract
Ligninolytic enzyme production and lignin degradation are typically the rate-limiting steps in the biofuel industry. To improve the efficiency of simultaneous bio-delignification and enzyme production, <i>Phanerochaete chrysosporium</i> was transformed by shock wave-induced acoustic cavitation to co-overexpress 3 peroxidases and 1 laccase and test it on the degradation of sugarcane bagasse and wheat bran. Lignin depolymerization was enhanced by up to 25% in the presence of recombinant fungi in comparison with the wild-type strain. Sugar release on lignocellulose was 2- to 6-fold higher by recombinant fungi as compared with the control. Wheat bran ostensibly stimulated the production of ligninolytic enzymes. The highest peroxidase activity from the recombinant strains was 2.6-fold higher, whereas the increase in laccase activity was 4-fold higher in comparison to the control. The improvement of lignin degradation was directly proportional to the highest peroxidase and laccase activity. Because various phenolic compounds released during lignocellulose degradation have proven to be toxic to cells and to inhibit enzyme activity, a significant reduction (over 40%) of the total phenolic content in the samples treated with recombinant strains was observed. To our knowledge, this is the first report that engineering <i>P. chrysosporium</i> enhances<i></i> biodegradation of lignocellulosic biomass.
Subject
Molecular Biology,Applied Microbiology and Biotechnology,Microbiology,Biotechnology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献