Endothelial-to-Mesenchymal Transition in Human and Murine Models of Congenital Diaphragmatic Hernia

Author:

Gilley Jamie,Hanneman Sandra K.,Ottosen Madelene J.,Shivanna Binoy,Keswani Sundeep

Abstract

<b><i>Introduction:</i></b> Congenital diaphragmatic hernia (CDH) is a complex congenital disorder, characterized by pulmonary hypertension (PH) and hypoplasia. PH secondary to CDH (CDH-PH) features devastating morbidity and mortality (25–30%) among neonates. An unmet need is determining mechanisms triggering CDH-PH to save infants. Prior data suggest abnormal remodeling of the pulmonary vascular extracellular matrix (ECM), presumed to be driven by endothelial-to-mesenchymal transition (EndoMT), hinders postnatal vasodilation and limits anti-PH therapy in CDH. There are limited data on the role of EndoMT in CDH-PH. <b><i>Methods:</i></b> The purpose of the study was to investigate how EndoMT contributes to CDH-PH by identifying cells undergoing EndoMT noted by alpha smooth muscle actin (α-SMA) expression in human umbilical vein endothelial cells (HUVECs) and lung tissue obtained from murine pups using the nitrofen model. <i>N</i> = 8 CDH, <i>N</i> = 8 control HUVECs were stained for α-SMA and CD31 after being exposed for 24 h to TGFB, a known EndoMT promoter. <i>N</i> = 8 nitrofen, <i>N</i> = 8 control murine pup lungs were also stained for α-SMA and CD31. α-SMA and CD31 expression was quantified in HUVECs and murine tissue using Fiji imaging software and normalized to the total number of cells per slide noted by DAPI staining. <b><i>Results:</i></b> CDH HUVECs demonstrated a 1.1-fold increase in α-SMA expression (<i>p</i> = 0.02). The murine model did not show statistical significance between nitrofen and control pup lungs; however, there was a 0.4-fold increase in α-SMA expression with a 0.8-fold decrease in CD31 expression in the nitrofen pup lungs when compared to controls. <b><i>Conclusion:</i></b> These results suggest that EndoMT could potentially play a role in the ECM remodeling seen in CDH-PH.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3