Zinc Depletion by TPEN Induces Apoptosis in Human Acute Promyelocytic NB4 Cells

Author:

Zhu Bo,Wang Jiayu,Zhou Feng,Liu Yingting,Lai Yueyang,Wang Jie,Chen Xiao,Chen Dianhua,Luo Lan,Hua Zi-Chun

Abstract

Background/Aims: The effects of zinc signaling on proliferation or apoptosis of leukemia cells remain elusive. In the present study, we used N, N, N’, N’-tetrakis-(2-pyridylmethyl)-ethylene-diamine (TPEN), a membrane-permeable zinc chelator, to evaluate the effect of zinc depletion on survival and apoptosis of NB4 acute promyelocytic leukemia (APL) cells. Methods: The pro-apoptotic effects of TPEN on NB4 cells were examined by flow cytometry, and observed using an optical microscope. Intracellular labile zinc, nitric oxide (NO) or reactive oxygen species (ROS) changes caused by TPEN were measured by flow cytometry. We then explored possible roles of the crosstalk between intracellular labile zinc signaling and nitric oxide signaling in TPEN-triggered apoptosis. Results: we found that TPEN induced apoptosis in NB4 APL cells in a dosage-dependent manner. We further demonstrated that TPEN triggered apoptosis by attenuating intracellular zinc and nitric oxide signaling in NB4 cells. Both exogenous zinc supplement and the nitric donor sodium nitroprusside (SNP) pre-incubation reversed TPEN-mediated inhibition of intracellular NO and Zn2+ signaling, and rescued NB4 cells from apoptosis. Conclusion: These results suggest for the first time that crosstalk between zinc signaling and nitric oxide pathway is essential for the survival of NB4 cells. TPEN induces apoptosis in NB4 cells via negatively regulating intracellular NO and Zn2+ signaling. Our in vitro data suggest that zinc depletion by TPEN may be a potential therapeutic strategy for APL.

Publisher

S. Karger AG

Subject

Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3