Artesunate Decreases β-Catenin Expression, Cell Proliferation and Apoptosis Resistance in the MG-63 Human Osteosarcoma Cell Line

Author:

Chen Peng,Gu Wan-Li,Gong Ming-Zhi,Wang Jun,Li Dong-Qing

Abstract

Background: This study aims to determine the effects of artesunate on proliferation, apoptosis and β-catenin expression in the human osteosarcoma cell line MG-63. Methods: MG-63 cells in the logarithmic growth phase were collected and cultured with different concentrations of artesunate (12.5 µg/mL, 25 µg/mL and 50 µg/mL) for 24 h, 48 h and 72 h. The total number of MG-63 cells and the morphological changes were observed under an inverted microscope. The MTT assay was adopted to test the inhibition rate (IR) of cell growth. The apoptosis rate was detected using annexin V/propidium iodide (PI) staining. Cell cycle distribution was identified by flow cytometry (FCM), and the expression levels of β-catenin, cyclins and cyclin dependent kinases (CDKs) were measured using Western blotting. Results: The results of the MTT assay indicated that artesunate could remarkably inhibit MG-63 cell proliferation compared with the rates in the untreated control group (0 µg/mL artesunate), and the inhibitory effect was dose-dependent. The apoptosis rate of MG-63 cells was elevated as the concentration of artesunate increased, and all the rates were significantly higher than that in the control group. Additionally, as the artesunate concentration increased, the proportion of MG-63 cells in G0/G1 phase gradually declined whereas that of cells in the G2/M and S phases increased. Western blotting confirmed that a higher concentration of artesunate reduced the expression levels of β-catenin, cyclin A, cyclin D1 and CDK1 and increased the expression levels of cyclin B1; however, artesunate had no impact on CDK2 expression in MG-63 cells. Conclusion: These results demonstrated that artesunate can inhibit β-catenin expression and cell proliferation as well as promote cell apoptosis in MG-63 cells, which indicates that artesunate may serve as a promising drug in the clinical treatment of osteosarcoma.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3