Characterization of Gene Regulatory Elements in Human Fetal Cortical Development: Enhancing Our Understanding of Neurodevelopmental Disorders and Evolution

Author:

Guo QiuyuORCID,Wu SarahORCID,Geschwind Daniel H.

Abstract

The neocortex is the region that most distinguishes human brain from other mammals and primates [Annu Rev Genet. 2021 Nov;55(1):555–81]. Studying the development of human cortex is important in understanding the evolutionary changes occurring in humans relative to other primates, as well as in elucidating mechanisms underlying neurodevelopmental disorders. Cortical development is a highly regulated process, spatially and temporally coordinated by expression of essential transcriptional factors in response to signaling pathways [Neuron. 2019 Sep;103(6):980–1004]. Enhancers are the most well-understood cis-acting, non-protein-coding regulatory elements that regulate gene expression [Nat Rev Genet. 2014 Apr;15(4):272–86]. Importantly, given the conservation of both DNA sequence and molecular function of the majority of proteins across mammals [Genome Res. 2003 Dec;13(12):2507–18], enhancers [Science. 2015 Mar;347(6226):1155–9], which are far more divergent at the sequence level, likely account for the phenotypes that distinguish the human brain by changing the regulation of gene expression. In this review, we will revisit the conceptual framework of gene regulation during human brain development, as well as the evolution of technologies to study transcriptional regulation, with recent advances in genome biology that open a window allowing us to systematically characterize cis-regulatory elements in developing human brain [Hum Mol Genet. 2022 Oct;31(R1):R84–96]. We provide an update on work to characterize the suite of all enhancers in the developing human brain and the implications for understanding neuropsychiatric disorders. Finally, we discuss emerging therapeutic ideas that utilize our emerging knowledge of enhancer function.

Publisher

S. Karger AG

Subject

Developmental Neuroscience,Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3