Author:
Elvira Bernat,Warsi Jamshed,Fezai Myriam,Munoz Carlos,Lang Florian
Abstract
Background/Aims: KCNQ1/E1 channels are expressed in diverse tissues and serve a variety of functions including endolymph secretion in the inner ear, cardiac repolarization, epithelial transport and cell volume regulation. Kinases involved in regulation of epithelial transport and cell volume include SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1), which are under control of WNK (with-no-K[Lys]) kinases. The present study explored whether KCNQ1/E1 channels are regulated by SPAK and/or OSR1. Methods: cRNA encoding KCNQ1/E1 was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active T233ESPAK, WNK insensitive T233ASPAK, catalytically inactive D212ASPAK, wild-type OSR1, constitutively active T185EOSR1, WNK insensitive T185AOSR1 and catalytically inactive D164AOSR1. Voltage gated K+ channel activity was quantified utilizing dual electrode voltage clamp and KCNQ1/E1 channel protein abundance in the cell membrane utilizing chemiluminescence of KCNQ1/E1 containing an extracellular Flag tag epitope (KCNQ1-Flag/E1). Results: KCNQ1/E1 activity and KCNQ1-Flag/E1 protein abundance were significantly enhanced by wild-type SPAK and T233ESPAK, but not by T233ASPAK and D212ASPAK. Similarly, KCNQ1/E1 activity and KCNQ1-Flag/E1 protein abundance were significantly increased by wild-type OSR1 and T185EOSR1, but not by T185AOSR1 and D164AOSR1. Conclusions: SPAK and OSR1 participate in the regulation of KCNQ1/E1 protein abundance and activity.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献