Insulin Receptor and Glucose Transporters in the Mammalian Cochlea

Author:

Huerzeler Nathan,Petkovic Vesna,Sekulic-Jablanovic Marijana,Kucharava Krystsina,Wright Matthew B.,Bodmer Daniel

Abstract

Insulin receptors are expressed on nerve cells in the mammalian brain, but little is known about insulin signaling and the expression of the insulin receptor (IR) and glucose transporters in the cochlea. We performed immunohistochemistry and gene/protein expression analysis to characterize the expression pattern of the IR and glucose transporters in the mouse organ of Corti (OC). We also performed glucose uptake assays to explore the action of insulin and the effects of pioglitazone, an insulin sensitizer, on glucose transport in the OC. Western blots of protein extracts from OCs showed high expression of IR and glucose transporter 3 (GLUT3). Immunohistochemistry demonstrated that the IR is specifically expressed in the supporting cells of the OC. GLUT3 was found in outer and inner hair cells, in the basilar membrane (BM), the stria vascularis (SV), Reissner’s membrane and spiral ganglion neurons (SGN). Glucose transporter 1 (GLUT1) was detected at low levels in the BM, SV and Reissner’s membrane, and showed high expression in the SGN. Fluorescence glucose uptake assays revealed that hair cells take up glucose and that addition of insulin (10 nM or 1 µM) approximately doubled the rate of uptake. Pioglitazone conferred a small but nonsignificant potentiation of glucose uptake at the highest concentration of insulin. Gene expression analysis confirmed expression of IR, GLUT1 and GLUT3 mRNA in the OC. Pioglitazone significantly upregulated IR and GLUT1 mRNA expression, which was further increased by insulin. Together, these data show that insulin-stimulated glucose uptake occurs in the OC and may be associated with upregulation of both the IR and GLUT1.

Publisher

S. Karger AG

Subject

Speech and Hearing,Sensory Systems,Otorhinolaryngology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3