Prediction of Locally Advanced Urothelial Carcinoma of the Bladder Using Clinical Parameters before Radical Cystectomy - A Prospective Multicenter Study

Author:

Martini Thomas,Aziz Atiqullah,Roghmann Florian,Rink Michael,Chun Felix K.,Fisch Margit,Trojan Lutz,Hakenberg Oliver W.,Zastrow Stefan,Wirth Manfred P.,Moersdorf Johannes,Brookman-May Sabine,Stief Christian G.,Haferkamp Axel,Wagenlehner Florian,Hohenfellner Markus,Herrmann Edwin,Lusuardi Lukas,Grimm Marc-Oliver,Müller Stephan C.,Roigas Jan,Bastian Patrick J.,Gierth Michael,Burger Maximilian,Pycha Armin,Seitz Christian,May Matthias,Bolenz Christian

Abstract

Introduction: We aimed at developing and validating a pre-cystectomy nomogram for the prediction of locally advanced urothelial carcinoma of the bladder (UCB) using clinicopathological parameters. Materials and Methods: Multicenter data from 337 patients who underwent radical cystectomy (RC) for UCB were prospectively collected and eligible for final analysis. Univariate and multivariate logistic regression models were applied to identify significant predictors of locally advanced tumor stage (pT3/4 and/or pN+) at RC. Internal validation was performed by bootstrapping. The decision curve analysis (DCA) was done to evaluate the clinical value. Results: The distribution of tumor stages pT3/4, pN+ and pT3/4 and/or pN+ at RC was 44.2, 27.6 and 50.4%, respectively. Age (odds ratio (OR) 0.980; p < 0.001), advanced clinical tumor stage (cT3 vs. cTa, cTis, cT1; OR 3.367; p < 0.001), presence of hydronephrosis (OR 1.844; p = 0.043) and advanced tumor stage T3 and/or N+ at CT imaging (OR 4.378; p < 0.001) were independent predictors for pT3/4 and/or pN+ tumor stage. The predictive accuracy of our nomogram for pT3/4 and/or pN+ at RC was 77.5%. DCA for predicting pT3/4 and/or pN+ at RC showed a clinical net benefit across all probability thresholds. Conclusion: We developed a nomogram for the prediction of locally advanced tumor stage pT3/4 and/or pN+ before RC using established clinicopathological parameters.

Publisher

S. Karger AG

Subject

Urology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3