Advanced Glycation End Products-Induced Activation of Keratinocytes: A Mechanism Underlying Cutaneous Immune Response in Psoriasis

Author:

Kang Pan,Chen Jianru,Wang Shiyu,Zhang Shaolong,Li Shuli,Guo Sen,Song Pu,Liu Ling,Wang Gang,Gao Tianwen,Zhang Weigang,Li Chunying

Abstract

Psoriasis is a common inflammatory skin disease, in which epidermal keratinocytes play a vital role in its pathogenesis by acting both as the responder and as the accelerator to the cutaneous psoriatic immune response. Advanced glycation end products (AGEs) are a class of proinflammatory metabolites that are commonly accumulating in cardiometabolic disorders. Recent studies have also observed the increased level of AGEs in the serum and skin of psoriasis patients, but the role of AGEs in psoriatic inflammation has not been well investigated. In the present study, we initially detected abnormal accumulation of AGEs in epidermal keratinocytes of psoriatic lesions collected from psoriasis patients. Furthermore, AGEs promoted the proliferation of keratinocytes via upregulated Keratin 17 (K17)-mediated p27<sup>KIP1</sup> inhibition followed by accelerated cell cycle progression. More importantly, AGEs facilitated the production of interleukin-36 alpha (IL-36α) in keratinocytes, which could enhance T helper 17 (Th17) immune response. In addition, the induction of both K17 and IL-36α by AGEs in keratinocytes was dependent on the activation of signal transducer and activator of transcription 1/3 (STAT1/3) signaling pathways. At last, the effects of AGEs on keratinocytes were mediated by the receptor for AGEs (RAGE). Taken together, these findings support that AGEs potentiate the innate immune function of keratinocytes, which contributes to the formation of psoriatic inflammation. Our study implicates AGEs as a potential pathogenic link between psoriasis and cardiometabolic comorbidities.

Publisher

S. Karger AG

Subject

Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3