Development of a Prototype Video Head Impulse Test System Using an iPhone for Screening of Peripheral Vestibular Dysfunction

Author:

Kuroda Tatsuaki,Kuroda Kazuhiro,Fushiki Hiroaki

Abstract

<b><i>Introduction:</i></b> Head impulse, nystagmus, and test of skew (HINTS) is more accurate for the early diagnosis of occipital fossa stroke than magnetic resonance imaging. However, the head impulse test (HIT) is relatively challenging to perform, as it is subjective. Herein, we developed a prototype video HIT (vHIT) system using an iPhone (Apple, Cupertino, CA, USA) that is compact, easy to operate, and analyzable by our iPhone application. <b><i>Methods:</i></b> The iPhone-vHIT and a vHIT using EyeSeeCam (Interacoustics, Eden Prairie, NM, USA) were performed on a healthy man in his 30s and on a patient with vestibular neuritis who visited the Mejiro University Ear Institute Clinic. For the iPhone-vHIT, eye movements were detected by analyzing high-speed videos captured using an iPhone camera, and head movements were followed using an iPhone gyro sensor. An iPhone fixation brace was used to capture the video without any blurring. <b><i>Results:</i></b> The iPhone-vHIT system obtained vHIT waveforms similar to those of the EyeSeeCam-vHIT system in the healthy man and the patient with vestibular neuritis. The iPhone-vHIT system effectively detected the reduced vestibulo-ocular reflex gain in patients with vestibular neuritis. The iPhone-vHIT system at 120 frames per second was less sensitive to catch-up saccades than the EyeSeeCam. <b><i>Conclusion:</i></b> vHIT systems using a smartphone have been reported but are currently unavailable. At present, the iPhone-vHIT application in this study is the only available smartphone-based vHIT system for screening of peripheral vestibular dysfunction. We believe that the prototype iPhone-vHIT with a high-speed camera will be clinically used to perform the vHIT, even though it only examines the lateral semicircular canal.

Publisher

S. Karger AG

Subject

Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3