Author:
Fezai Myriam,Ahmed Musaab,Hosseinzadeh Zohreh,Lang Florian
Abstract
Background/Aims: The pleotropic functions of the large conductance Ca2+-activated K+ channels (maxi K+ channel or BK channels) include regulation of neuronal excitation and cell volume. Kinases participating in those functions include the glycogen synthase kinase GSK3 ß which is under negative control of protein kinase B (PKB/Akt). GSK3ß is inhibited by the antidepressant Lithium. The present study thus explored whether GSK3ß modifies the activity of BK channels. Methods: cRNA encoding the Ca2+ insensitive BK channel mutant BKM513I+Δ899-903 was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type GSK3ß, inactive K85RGSK3ß, or wild-type GSK3ß with wild-type PKB. K+ channel activity was measured utilizing dual electrode voltage clamp. Results: BK channel activity in BKM513I+Δ899-903 expressing oocytes was significantly increased by co-expression of GSK3ß, but not by co-expression of K85RGSK3ß. The effect of wild type GSK3ß was abrogated by additional co-expression of wild-type PKB and by 24 hours incubation with Lithium (1 mM). Disruption of channel insertion into the cell membrane by brefeldin A (5 µM) was followed by a decline of the current to a similar extent in oocytes expressing BK and GSK3ß and in oocytes expressing BK alone. Conclusion: GSK3ß may up-regulate BK channels, an effect disrupted by Lithium or additional expression of PKB and possibly participating in the regulation of cell volume and excitability.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献