Putative Condition-Dependent Viability Selection in Wild-Type Stocks of <b><i>Drosophila pseudoobscura</i></b>

Author:

Altindag Ulku H.,Taylor Hannah N.ORCID,Shoben Chelsea,Pownall Keeley A.,Stevison Laurie S.ORCID

Abstract

Meiotic recombination rates vary in response to intrinsic and extrinsic factors. Recently, heat stress has been shown to reveal plasticity in recombination rates in <i>Drosophila pseudoobscura.</i> Here, a combination of molecular genotyping and X-linked recessive phenotypic markers were used to investigate differences in recombination rates due to heat stress. In addition, haplotypes from the genetic crosses were compared to test if they deviated from equal proportions, which would indicate viability selection. To avoid this potential bias, SNP genotyping markers overlapping the regions assayed with mutant markers were used to further investigate recombination rate. Interestingly, skews in haplotype frequency were consistent with the fixation of alleles in the wild-type stocks used that are unfit at high temperature. Evidence of viability selection due to heat stress in the wild-type haplotypes was most apparent on days 7–9 when more mutant non-crossover haplotypes were recovered in comparison to wild type (<i>p</i> &#x3c; 0.0001). Recombination analysis using SNP markers showed days 9–10 as significantly different due to heat stress in 2 pairs of consecutive SNP markers (<i>p</i> = 0.018; <i>p</i> = 0.015), suggesting that during this time period the recombination rate is most sensitive to heat stress. This peak timing for recombination plasticity is consistent with <i>Drosophila melanogaster</i> based on a comparison of similarly timed key meiotic events, enabling future mechanistic work of temperature stress on recombination rate.

Publisher

S. Karger AG

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3