Synbindin Downregulation Participates in Slit Diaphragm Dysfunction

Author:

Ivanov Veniamin,Fukusumi Yoshiyasu,Zhang Ying,Yasuda Hidenori,Kitazawa Meiko,Kawachi Hiroshi

Abstract

<b><i>Introduction:</i></b> Synbindin, originally identified as a neuronal cytoplasmic molecule, was found in glomeruli. The cDNA subtractive hybridization technique showed the mRNA expression of synbindin in glomeruli was downregulated in puromycin aminonucleoside (PAN) nephropathy, a mimic of minimal-change nephrotic syndrome. <b><i>Methods:</i></b> The expression of synbindin in podocytes was analyzed in normal rats and 2 types of rat nephrotic models, anti-nephrin antibody-induced nephropathy, a pure slit diaphragm injury model, and PAN nephropathy, by immunohistochemical analysis and RT-PCR techniques. To elucidate the function of synbindin, a gene silencing study with human cultured podocytes was performed. <b><i>Results:</i></b> Synbindin was mainly expressed at the slit diaphragm area of glomerular epithelial cells (podocytes). In both nephrotic models, decreased mRNA expression and the altered staining of synbindin were already detected at the early phase when proteinuria and the altered staining of nephrin, a key molecule of slit diaphragm, were not detected yet. Synbindin staining was clearly reduced when severe proteinuria was observed. When the cultured podocytes were treated with siRNA for synbindin, the cell changed to a round shape, and filamentous actin structure was clearly altered. The expression of ephrin-B1, a transmembrane protein at slit diaphragm, was clearly lowered, and synaptic vesicle-associated protein 2B (SV2B) was upregulated in the synbindin knockdown cells. <b><i>Conclusion:</i></b> Synbindin participates in maintaining foot processes and slit diaphragm as a downstream molecule of SV2B-mediated vesicle transport. Synbindin downregulation participates in slit diaphragm dysfunction. Synbindin can be an early marker to detect podocyte injury.

Publisher

S. Karger AG

Subject

Nephrology

Reference24 articles.

1. Kawachi H, Fukusumi Y. New insight into podocyte slit diaphragm, a therapeutic target of proteinuria. Clin Exp Nephrol. 2020 Mar;24(3):193–204.

2. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000 Apr;24(4):349–54.

3. Donoviel DB, Freed DD, Vogel H, Potter DG, Hawkins E, Barrish JP, et al. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol. 2001 Jul;21(14):4829–36.

4. Kawachi H, Koike H, Kurihara H, Sakai T, Shimizu F. Cloning of rat homologue of podocin: expression in proteinuric states and in developing glomeruli. J Am Soc Nephrol. 2003 Jan;14(1):46–56.

5. Miyauchi N, Saito A, Karasawa T, Harita Y, Suzuki K, Koike H, et al. Synaptic vesicle protein 2B is expressed in podocyte, and its expression is altered in proteinuric glomeruli. J Am Soc Nephrol. 2006 Oct;17(10):2748–59.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3