Coagulation Risk Predicting in Anticoagulant-Free Continuous Renal Replacement Therapy

Author:

Liu Liang,Liu Dashuang,He Ting,Liang Bo,Zhao Jinghong

Abstract

<b><i>Introduction:</i></b> Continuous renal replacement therapy (CRRT) is a prolonged continuous extracorporeal blood purification therapy to replace impaired renal function. Typically, CRRT therapy requires routine anticoagulation, but for patients at risk of bleeding and with contraindications to sodium citrate, anticoagulant-free dialysis therapy is necessary. However, this approach increases the risk of CRRT circuit coagulation, leading to treatment interruption and increased resource consumption. In this study, we utilized artificial intelligence machine learning methods to predict the risk of CRRT circuit coagulation based on pre-CRRT treatment metrics. <b><i>Methods:</i></b> We retrospectively analyzed 212 patients who underwent anticoagulant-free CRRT from October 2022 to October 2023. Patients were categorized into high-risk and low-risk groups based on CRRT circuit coagulation within 24 h. We employed eight machine learning methods to predict the risk of circuit coagulation. The performance of the model was evaluated using the area under the curve (AUC) of the receiver operating characteristic. 5-fold cross-validation was used to validate the machine learning models. Feature importance and SHAP plots were used to interpret the model’s performance and key drivers. <b><i>Results:</i></b> We identified 88 patients (41.51%) at high risk of circuit coagulation within 24 h of CRRT. Our machine learning models showed excellent predictive performance, with ensemble learning achieving an AUC of 0.863 (95% CI: 0.860–0.868), outperforming individual algorithms. Random forest was the best single-algorithm model, with an AUC of 0.819 (95% CI: 0.814–0.823). The top three features identified as most important by the SHAP summary plot and feature importance graph are platelet, filtration fraction (FF), and triglycerides. <b><i>Conclusion:</i></b> We created a model using machine learning to predict the risk of circuit coagulation during anticoagulant-free CRRT therapy. Our model performs well (AUC 0.863) and identifies key factors like platelets, FF, and triglycerides. This facilitates the development of personalized treatment strategies by clinicians aimed at reducing circuit coagulation risk, thereby enhancing patient outcomes and reducing healthcare expenses.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3