Reprogramming Metabolism to Enhance Kidney Tolerance during Sepsis: The Role of Fatty Acid Oxidation, Aerobic Glycolysis, and Epithelial De-Differentiation

Author:

Gómez HernandoORCID

Abstract

<b><i>Background:</i></b> The recognition that sepsis induces acute kidney injury (AKI) in the absence of overt necrosis or apoptosis and even in the presence of increased renal blood flow has led to the consideration that kidney tubular epithelial cells (TECs) may deploy defense mechanisms to survive the insult. <b><i>Summary:</i></b> This concept dovetails well with the notion that the defense against infection not only depends on the capacity of the immune system to limit the microbial burden or resistance capacity but also on the capacity of the host to limit tissue injury, collectively known as tolerance. To sustain the high energy requirement that ion transport mandates, kidney TECs use fatty acid oxidation (FAO) as one of the preferred sources of energy. Inflammatory processes like endotoxemia and sepsis decrease mitochondrial FAO and hinder mitochondrial respiration. Impaired FAO is associated with TEC de-differentiation, loss of kidney function, and TEC injury through lipotoxicity and oxidative stress in the acute setting, and with maladaptive repair and fibrosis after AKI in the latter stages. AMP-activated protein kinase (AMPK) is a master regulator of energy and promoter of FAO that can be activated pharmacologically to protect against AKI and death during experimental sepsis, operating through a tolerance mechanism. <b><i>Key Messages:</i></b> Organ dysfunction during sepsis is the expression of tissue injury and adaptive defense mechanisms operating through resistance or tolerance that prioritize cell survival over organ function. Metabolic reprogramming away from FAO/oxidative phosphorylation seems to be a common pathological denominator throughout the AKI continuum that may be targeted through the activation of AMPK.

Publisher

S. Karger AG

Reference22 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3