Abstract
<b><i>Introduction:</i></b> Suture tensile properties have only been tested in extrauterine environments. Amniotic fluid (AF) is a complex milieu of enzymes and inflammatory factors. This study tested the mechanical properties of sutures with a variety of inherent properties, after exposure to AF from patients with conditions prompting fetal intervention. <b><i>Methods:</i></b> AF was obtained from 3 patients with twin-twin transfusion syndrome (TTTS), and 3 patients with neural tube defects. Six types of 2-0 sutures were placed on 1.2 N of tension to mimic placement in vivo, and incubated in AF at 37°C (98.6°F). These included ethylene terephthalate (Ethibond), glycomer 631 (V-Loc), poliglecaprone 25 (Monocryl), poly-4-hydroxybutyrate (Monomax), polydioxanone (PDS), and polyglactin 910 (Vicryl). Failure load, stress, strain, and initial modulus were tested after 24 h of incubation and after 4 weeks, and compared with control (unincubated) sutures using <i>t</i> tests, Kruskal-Wallis tests, and stress-strain curves. <b><i>Results:</i></b> Poliglecaprone 25 and polyglactin 910 dissolve more quickly in AF compared to outside the uterus, disintegrating at 4 weeks. Ethylene terephthalate and PDS experienced little change across 4 weeks of incubation. Glycomer 631 and poly-4-hydroxybutyrate exhibited interesting behavior in AF: glycomer 631 became more deformable at 24 h but later regained toughness by 4 weeks, while poly-4-hydroxybutyrate became tougher and in some cases stronger with time in AF. As a class, braided sutures act more like rigid materials, and monofilaments act like deformable plastics. <b><i>Conclusion:</i></b> These findings along with other suture characteristics such as ease of handling and availability may inform fetal intervention teams as they optimize procedures in a relatively new surgical field.