Author:
Wu Qing,Zhou Xiaokang,Huang Danqing,JI Yingchen,Kang Feiwu
Abstract
Background/Aims: Evidence suggests that IL-6 affects bone mass by modulating osteocyte communication towards osteoclasts. However, the mechanism by which IL-6 enhances osteocyte-mediated osteoclastogenesis is unclear. We aimed to investigate the inflammatory factors in serum after orthodontic surgery and their relationship between osteocytes and osteoclasts. Methods: Serum was obtained from 10 orthognathic surgery patients, and inflammatory factors were detected by ELISA. We treated the osteocyte-like cell line MLO-Y4 with recombinant mouse IL-6 and IL-6 receptor (IL-6R), and used quantitative RT-PCR and Western blotting to explore Receptor activator of nuclear factor-κB ligand (RANKL) expression at both the mRNA and protein level. MLO-Y4 cells were co-cultured with osteoclast precursor cells, and the formation of osteoclasts was detected by tartrate-resistant acid phosphatase (TRAP) staining. To explore the role of JAK2 in the osteocyte-mediated osteoclastogenesis, AG490, a JAK2 inhibitor, was used to inhibit the JAK2-STAT3 pathway in osteocytes. Results: In our study, we found that IL-6 and RANKL were stimulated in serum 3-7 days after orthognathic surgery. Therefore, IL-6 and IL-6 receptor enhanced the expression of RANKL at both the mRNA and protein level in MLO-Y4. Furthermore, when MLO-Y4 cells were co-cultured with osteoclast precursor cells, it significantly stimulated osteoclastogenesis. Our study indicated that osteocytes could promote osteoclastic differentiation and the formation of TRAP-positive multinucleated cells after stimulation with IL-6 and IL-6R. Our results also indicated that treatment with IL-6 and IL-6R increased RANKL mRNA expression and the RANKL/OPG expression ratio. Meanwhile, the phosphorylation of Janus kinase 2 (JAK2) and Signal transducer and activator of transcription (STAT3) also correlated with RANKL levels. Furthermore, we investigated the effects of a specific JAK2 inhibitor, AG490, on the expression of RANKL in osteocyte-like MLO-Y4 cells and osteocyte-mediated osteoclastogenesis. The results showed that AG490 inhibited (p)-JAK2 and RANKL expression. Osteoclastic differentiation was decreased after pretreatment in MLO-Y4 with mouse IL-6/IL-6R and AG490; therefore, we concluded that IL-6 increased osteocyte-mediated osteoclastic differentiation by activating JAK2 and RANKL. Conclusion: The effects of IL-6/il-6R and AG490 on osteocyte-mediated osteoclastogenesis contribute to our understanding of the role of inflammatory factors in the interaction between osteocytes and osteoclast precursors. IL-6 and RANKL are key factors for bone remodelling after the orthodontic surgery, and their roles in bone remodelling may be fundamental mechanisms accelerating tooth movement by orthodontic surgery.
Cited by
187 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献