Inhibition of MicroRNA-21-5p Promotes the Radiation Sensitivity of Non-Small Cell Lung Cancer Through HMSH2

Author:

Song Yu,Zuo Yun,Qian Xiao-Lan,Chen Zhi-Peng,Wang Shao-Kai,Song Lei,Peng Li-Ping

Abstract

Background: This study aimed to explore the effects of microRNA-21-5p (miR-21-5p) on the radiation sensitivity of non-small cell lung cancer (NSCLC) and the involvement of human MutS homolog 2 (hMSH2) One hundred fourteen NSCLC patients at stage II or III who received surgery and postoperative radiotherapy were enrolled in this study. Methods: The patients were assigned into radiation-sensitive and -insensitive groups. NSCLC A549 cells were transfected to generate control, Negative control (NC), miR-21-5p inhibitor, miR-21-5p mimic, small interfering hMSH2 (sihMSH2), miR-21-5p inhibitor + sihMSH2 and hMSH2 overexpression groups. Immunohistochemistry was performed to detect the hMSH2 expression in transfected and irradiated cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were performed to evaluate A549 miR-21-5p and hMSH2 expression in transfected and irradiated cells. A colony formation assay was adopted for cell survival analysis. The relationship between miR-21-5p and hMSH2 was verified by a luciferase reporter assay. Cell viability was measured by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and apoptosis was assessed by flow cytometry. NSCLC nude mouse models were established, and tumor volumes and tumor weights were recorded. Results: The radiation-sensitive group of patients exhibited lower miR-21-5p but higher hMSH2 expression than the insensitive group. For irradiated A549 cells, lower cell survival, higher apoptosis, increased miR-21-5p expression and decreased hMSH2 expression were observed at 6 and 8 Gy than at 0, 2 and 4 Gy; compared to 6 Gy, cell survival and hMSH2 expression were decreased and apoptosis and miR-21-5p expression were increased at 8 Gy. Additionally, miR-21-5p was found to target hMSH2. Compared with the control group, the cell survival rate was lower and the apoptosis rate higher in the miR-21-5p inhibitor group, whereas the opposite was observed for the miR-21-5p mimic and sihMSH2 groups. For the mouse model, decreased tumor volume and tumor weight and higher hMSH2 expression were found in the miR-21-5p inhibitor, radiation, hMSH2 overexpression, miR-21-5p inhibitor + radiation and hMSH2 overexpression + radiation groups compared with the control group. In addition, tumor volume and tumor weight were decreased and hMSH2 expression increased in the miR-21-5p inhibitor + radiation and hMSH2 overexpression + radiation groups compared with the radiation alone group. Conclusion: These findings indicate that inhibition of miR-21 can promote the radiation sensitivity of NSCLC by targeting hMSH2.

Publisher

S. Karger AG

Subject

Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3