MiR-27a is Essential for the Shift from Osteogenic Differentiation to Adipogenic Differentiation of Mesenchymal Stem Cells in Postmenopausal Osteoporosis

Author:

You Li,Pan Ling,Chen Lin,Gu Wensha,Chen Jinyu

Abstract

Background/Aims: Osteoporosis is a progressive bone disease characterized by a decrease in bone mass and density, which results in an increased risk of fractures. Mesenchymal stem cells (MSCs) are progenitor cells that can differentiate into osteoblasts, osteocytes and adipocytes in bone and fat formation. A reduction in the differentiation of MSCs into osteoblasts contributes to the impaired bone formation observed in osteoporosis. MicroRNAs (miRNAs) play a regulatory role in osteogenesis and MSC differentiation. MiR-27a has been reported to be down-regulated in the development of osteoporosis and during adipogenic differentiation. Methods: In this study, a miRNA microarray analysis was used to investigate expression profiles of miRNA in the serum of osteoporotic patients and healthy controls and this data was validated by quantitative real-time PCR (qRT-PCR). MSCs isolated from human and mice with miR-27a inhibition or overexpression were induced to differentiate into osteoblasts or adipocytes. TargetScan and PicTar were used to predict the target gene of miR-27a. The mRNA or protein levels of several specific proteins in MSCs were detected using qRT-PCR or western blot analysis. Ovariectomized mice were used as in vivo model of human postmenopausal osteoporosis for bone mineral density measurement, micro-CT analysis and histomorphometric analysis. Results: Here, we analyzed the role of miR-27a in bone metabolism. Microarray analysis indicated that miR-27a expression was significantly reduced in osteoporotic patients. Analysis on MSCs derived from patients with osteoporosis indicated that osteoblastogenesis was reduced, whereas adipogenesis was increased. MSCs that had undergone osteoblast induction showed a significant increase in miR-27a expression, whereas cells that had undergone adipocyte induction showed a significant decrease in miR-27a expression, indicating that miR-27a was essential for MSC differentiation. We demonstrated that myocyte enhancer factor 2 c (Mef2c), a transcription factor, was the direct target of miR-27a using a dual luciferase assay. An inverse relationship between miR-27a expression and Mef2c expression in osteoporotic patients was shown. Silencing of miR-27a decreased bone formation, confirming the role of miR-27a in bone formation in vivo. Conclusion: In summary, miR-27a was essential for the shift of MSCs from osteogenic differentiation to adipogenic differentiation in osteoporosis by targeting Mef2c.

Publisher

S. Karger AG

Subject

Physiology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3