Identification and Functional Study of Enhancers of EYA1: The Causative Gene of Branchio-Oto-Renal Syndrome

Author:

Wang Feng,Zhang Ruizhi,Jian Jing,Sun Yanhe,Li Qiang

Abstract

<b><i>Introduction:</i></b> Branchio-oto-renal syndrome (BOR syndrome) is a rare genetic disorder with an incidence of 1 in 40,000, affecting the development of multiple organs, including the branchio, ear, and kidney. It is responsible for 2% of childhood deafness. Currently, variants in the coding regions of the main causative genes, such as <i>EYA1</i>, <i>SIX1</i>, and <i>SIX5</i>, explain only half of the disease’s etiology. Therefore, there is a need to explore the non-coding regions, which constitute the majority of the genome, especially the regulatory regions, as potential new causative factors. <b><i>Method:</i></b> In this study, we focused on the <i>EYA1</i> gene, which accounts for over 40% of BOR syndrome cases, and conducted a screening of candidate enhancers within a 250-kb region upstream and downstream of the gene using comparative genomics. We characterized the enhancer activities of these candidates in zebrafish using the Tol2 transposon system. <b><i>Results:</i></b> Our findings revealed that out of the 11 conserved non-coding elements (CNEs) examined, four exhibited enhancer activity. Notably, CNE16.39 and CNE16.45 displayed tissue-specific enhancer activity in the ear. CNE16.39 required the full-length 206 bp sequence for inner-ear-specific expression, while the core functional region of CNE16.45 was identified as 136 bp. Confocal microscopy results demonstrated that both CNE16.39 and CNE16.45 drove the expression of GFP in the sensory region of the crista of the inner ear in zebrafish, consistent with the expression pattern of eya1. <b><i>Conclusion:</i></b> This study contributes to the understanding of the regulatory network governing EYA1 expression and offers new insights to further clarify the pathogenic role of EYA1 in BOR syndrome.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3