Deciphering the Mechanism of Glyphosate Resistance in <b><i>Amaranthus palmeri</i></b> by Cytogenomics

Author:

Koo Dal-Hoe,Sathishraj Rajendran,Friebe Bernd,Gill Bikram S.

Abstract

In agriculture, various chemicals are used to control the weeds. Out of which, glyphosate is an important herbicide invariably used in the cultivation of glyphosate-resistant crops to control weeds. Overuse of glyphosate results in the evolution of glyphosate-resistant weeds. Evolution of glyphosate resistance (GR) in <i>Amaranthus palmeri</i> (AP) is a serious concern in the USA. Investigation of the mechanism of GR in AP identified different resistance mechanisms of which <i>5-enolpyruvylshikimate-3-phosphate synthase</i> (<i>EPSPS</i>) gene amplification is predominant. Molecular analysis of GR AP identified the presence of a 5- to &#x3e;160-fold increase in copies of the <i>EPSPS</i> gene than in a glyphosate-susceptible (GS) population. This increased copy number of the <i>EPSPS</i> gene increased the genome size ranging from 3.5 to 11.8%, depending on the copy number compared to the genome size of GS AP. FISH analysis using a 399-kb <i>EPSPS</i> cassette derived from bacterial artificial chromosomes (BACs) as probes identified that amplified <i>EPSPS</i> copies in GR AP exist in extrachromosomal circular DNA (eccDNA) in addition to the native copy in the chromosome. The <i>EPSPS</i> gene-containing eccDNA having a size of ∼400 kb is termed <i>EPSPS</i>-eccDNA and showed somatic mosacism in size and copy number. <i>EPSPS</i>-eccDNA has a genetic mechanism to tether randomly to mitotic or meiotic chromosomes during cell division or gamete formation and is inherited to daughter cells or progeny generating copy number variation. These eccDNAs are stable genetic elements that can replicate and exist independently. The genomic characterization of the <i>EPSPS</i> locus, along with the flanking regions, identified the presence of a complex array of repeats and mobile genetic elements. The cytogenomics approach in understanding the biology of <i>EPSPS</i>-eccDNA sheds light on various characteristics of <i>EPSPS</i>-eccDNA that favor GR in AP.

Publisher

S. Karger AG

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3