The Formation of Aberrant Collateral Vessels during Coronary Arteriogenesis in Dog Heart

Author:

Guan YingluORCID,Cai Baizhen,Liu Zhenghua,Ye Feng,Deng Panyue,Cai Wei-Jun,Schaper Jutta,Schaper Wolfgang

Abstract

We previously reported excessive growth of collateral vessels in the dog heart during arteriogenesis induced by implantation of an ameroid constrictor around the circumflex branch of the left coronary artery. In the present study, using histology and immunocofocal microscopy, we further investigated how these aberrant collateral vessels form. By comparison with mature collateral vessels the following findings were made: perivascular space was very narrow where damage of the perivascular myocardium occurred; the neointima was very thick, resulting in a very small lumen; elastica van Gieson staining revealed the absence of the internal elastic lamina and of elastic fibers in the adventitia, but abundant collagen in the adventitia as well as in the neointima; smooth muscle cells of the neointima expressed less α-SM actin and little desmin; expression of the fibroblast growth factors aFGF, bFGF and platelet-derived growth factor (PDGF)-AB was observed mainly in the endothelial cells and abluminal region, but transforming growth factor-β1 was only present in the adventitia and damaged myocardium; angiogenesis in the neointima was observed in some collateral vessels expressing high levels of eNOS, and cell proliferation was mainly present in the abluminal region, but apoptosis was in the deep neointima. In conclusion, these data for the first time reveal that the formation of the aberrant collateral vessels in the dog heart involves active extracellular proteolysis and a special expression profile of growth factors, eNOS, cell proliferation and apoptosis. The finding of a narrow perivascular space and perivascular myocardial damage suggests that anatomical constraint is most likely the cause for exacerbated inward remodeling in aberrant collateral vessels in dog heart.

Publisher

S. Karger AG

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3