The Transient Receptor Potential Channel, Vanilloid 5, Induces Chondrocyte Apoptosis via Ca2+ CaMKII–Dependent MAPK and Akt/ mTOR Pathways in a Rat Osteoarthritis Model

Author:

Wei Yingliang,Jin Zhaofeng,Zhang He,Piao Shang,Lu Jinghan,Bai Lunhao

Abstract

Background/Aims: Chondrocyte apoptosis is a central pathological feature of cartilage in osteoarthritis (OA). Accumulating evidence suggests that calcium ions (Ca2+) are an important regulator of apoptosis. Previously, we reported that the transient receptor potential channel vanilloid (TRPV5) is upregulated in monoiodoacetic acid (MIA)-induced OA articular cartilage. Methods: The protein levels of TRPV5, phosphorylated Ca2+/calmodulin-dependent kinase II (p-CaMKII), and total CaMKII were detected in vivo using western blotting techniques. Primary chondrocytes were isolated and cultured in vitro. Then, p-CAMKII was immunolocalized by immunofluorescence in chondrocytes. Fluo-4AM staining was used to assess intracellular Ca2+. Annexin V-fluorescein isothiocyanate / propidium iodide flow cytometric analysis was performed to determine chondrocyte apoptosis. Western blotting techniques were used to measure the expression of apoptosis-related proteins. Results: We found that ruthenium red (aTRPV5inhibitor)or(1-[N,O-bis-(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperaze (KN-62) (an inhibitor of Ca2+/calmodulin-dependent kinase II (CaMKII) phosphorylation) can relieve or even reverse OA in vivo. We found that TRPV5 has a specific role in mediating extracellular Ca2+ influx leading to chondrocyte apoptosis in vitro. The apoptotic effect in chondrocytes was inhibited by KN-62. We found that activated p-CaMKII could elicit the phosphorylation of extracellular signal-regulated protein kinase 1/2, c-Jun N-terminal kinase, and p38, three important regulators of the mitogen-activated protein kinase (MAPK) cascade. Moreover, we also showed that activated p-CaMKII could elicit the phosphorylation of protein kinase B (Akt) and two important downstream regulators of mammalian target of rapamycin (mTOR): 4E-binding protein, and S61 kinase. Conclusion: Our results demonstrate that upregulated TRPV5 may be an important initiating factor that activates CaMKII phosphorylation via the mediation of Ca2+ influx. In turn, activated p-CaMKII plays a critical role in chondrocyte apoptosis via MAPK and Akt/mTOR pathways.

Publisher

S. Karger AG

Subject

Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3