Quercetin Inhibits Pacemaker Potentials via Nitric Oxide/cGMP-Dependent Activation and TRPM7/ANO1 Channels in Cultured Interstitial Cells of Cajal from Mouse Small Intestine

Author:

Gim Huijin,Nam Joo Hyun,Lee Soojin,Shim Ji Hwan,Kim Hyun Jung,Ha Ki-Tae,Kim Byung Joo

Abstract

Background: Quercetin regulates gastrointestinal (GI) motor activity but the molecular mechanism involved has not been determined. The authors investigated the effects of quercetin, a flavonoid present in various foods, on the pacemaker activities of interstitial cells of Cajal (ICCs) in murine small intestine in vitro and on GI motility in vivo. Materials and Methods: Enzymatic digestion was used to dissociate ICCs from mouse small intestines. The whole-cell patch-clamp configuration was used to record pacemaker potentials in cultured ICCs in the absence or presence of quercetin and to record membrane currents of transient receptor potential melastatin (TRPM) 7 or transmembrane protein 16A (Tmem16A, anoctamin1 (ANO1)) overexpressed in human embryonic kidney (HEK) 293 cells. The in vivo effects of quercetin on GI motility were investigated by measuring the intestinal transit rates (ITRs) of Evans blue in normal mice. Results: Quercetin (100-200 μM) decreased the amplitudes and frequencies of pacemaker activity in a concentration-dependent manner in current clamp mode, but this action was blocked by naloxone (a pan-opioid receptor antagonist) and by GDPβS (a GTP-binding protein inhibitor). However, potassium channels were not involved in these inhibitory effects of quercetin. To study the quercetin signaling pathway, we examined the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of guanylate cyclase, and of RP-8-CPT-cGMPS, an inhibitor of protein kinase G (PKG). These inhibitors blocked the inhibitory effects of quercetin on pacemaker activities. Also, L-NAME (100 μM), a non-selective NO synthase (NOS) inhibitor, blocked the effects of quercetin on pacemaker activity and quercetin stimulated cGMP production. Furthermore, quercetin inhibited both Ca2+-activated Cl- channels (TMEM16A, ANO1) and TRPM7 channels. In vivo, quercetin (10-100 mg/kg, p.o.) decreased ITRs in normal mice in a dose-dependent manner. Conclusions: Quercetin inhibited ICC pacemaker activities by inhibiting TRPM7 and ANO1 via opioid receptor signaling pathways in cultured murine ICCs. The study shows quercetin attenuates GI tract motility, and suggests quercetin be considered the basis for the development of novel spasmolytic agents for the prevention or alleviation of GI motility dysfunctions.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3