A Deep Learning Model for Detecting Rhegmatogenous Retinal Detachment Using Ophthalmologic Ultrasound Images

Author:

Wang Huihang,Chen Xuling,Miao Xiaocui,Tang Shumin,Lin Yijun,Zhang Xiaojuan,Chen Yingying,Zhu Yihua

Abstract

<b><i>Introduction:</i></b> Rhegmatogenous retinal detachment (RRD) is one of the most common fundus diseases. Many rural areas of China have few ophthalmologists, and ophthalmologic ultrasound examination is of great significance for remote diagnosis of RRD. Therefore, this study aimed to develop and evaluate a deep learning (DL) model, to be used for automated RRD diagnosis based on ophthalmologic ultrasound images, in order to support timely diagnosis of RRD in rural and remote areas. <b><i>Methods:</i></b> A total of 6,000 ophthalmologic ultrasound images from 1,645 participants were used to train and verify the DL model. A total of 5,000 images were used for training and validating DL models, and an independent testing set of 1,000 images was used to test the performance of eight DL models trained using four different DL model architectures (fully connected neural network, LeNet5, AlexNet, and VGG16) and two preprocessing techniques (original, original image augmented). Receiver operating characteristic (ROC) curves were used to analyze their performance. Heatmaps were generated to visualize the process of the best DL model in the identification of RRD. Finally, five ophthalmologists were invited to diagnose RRD independently on the same test set of 1,000 images for performance comparison with the best DL model. <b><i>Results:</i></b> The best DL model for identifying RRD achieved an area under the ROC curve (AUC) of 0.998 with a sensitivity and specificity of 99.2% and 99.8%, respectively. The best preprocessing method in each model architecture was the application of original image augmentation (average AUC = 0.982). The best model architecture in each preprocessing method was VGG16 (average AUC = 0.998). <b><i>Conclusion:</i></b> The best DL model determined in this study has higher accuracy, sensitivity, and specificity than the ophthalmologists’ diagnosis in identifying RRD based on ophthalmologic ultrasound images. This model may provide support for timely diagnosis in locations without access to ophthalmologic care.

Publisher

S. Karger AG

Subject

Sensory Systems,Ophthalmology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3